首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The purpose of this study was to investigate the relationships of rate of deoxygenation determined using near-infrared spectroscopy (NIRS) during isometric contraction exercise (Ratedeoxy) with maximal muscle strength, muscle thickness and muscle oxidative capacity of knee extensors in eight well-trained male athletes. The subjects performed sustained isometric extension at 30% and 50% of the maximal voluntary contraction (MVC) load for 10s and 30 repetitive maximal isokinetic knee extensions. Ratedeoxy in the final 5s of 30% MVC was negatively correlated with maximal muscle strength, muscle thickness of knee extensors and the half-time of deoxygenation recovery (T1/2) determined by NIRS after 30 repetitive maximal isokinetic contractions, defined as muscle oxidative capacity. The results suggest that Ratedeoxy during submaximai isometric contraction reflects muscle aerobic capacity.  相似文献   

2.
INTRODUCTION: Inhomogeneity of magnetic fields, both B(0) and B(1), has been a major challenge in magnetic resonance imaging (MRI). Field inhomogeneity leads to image artifacts and unreliability of signal intensity (SI) measurements. This work proposes and shows the feasibility of generating equilibrium signal intensity (SI(Eq)) maps that can be utilized either to speed up relaxation-rate measurement or to enhance image quality and relaxation-rate-based weighting in various applications. METHODS: A 1.5-T MRI scanner was used. In canines (n=4), myocardial infarction was induced, and 48 h after the administration of 0.05 mmol kg(-1) Gd(ABE-DTTA), a contrast agent with slow tissue kinetics, in vivo R(1) mapping was carried out using an inversion recovery (IR)-prepared, fast gradient-echo sequence with varying inversion times (TIs). To test the SI(Eq) mapping method without the confounding effects of motion and blood flow, we carried out ex vivo R(1) mapping after the administration of 0.2 mmol kg(-1) Gd(DTPA) using an IR-prepared, fast spin-echo sequence in another group of dogs (n=2). R(1,full) maps and SI(Eq) maps were generated from the data from both sequences by three-parameter nonlinear curve fitting of the SI versus TI dependence. R(1,full) maps served as the reference standard. Raw IR images were then divided by the SI(Eq) maps, yielding corrected SI maps (COSIMs). Additionally, R(1) values were calculated from each single-TI image separately, using the SI(Eq) value and a one-parameter curve-fitting procedure (R(1,single)). Voxelwise correlation analysis was carried out for the COSIMs and the R(1,single) maps, both versus the standard R(1,full) maps. Deviations of R(1,single) from R(1,full) were statistically evaluated. RESULTS: In vivo, COSIM versus R(1,full) showed significantly (P<.05) better correlation [correlation coefficient (CC)=0.95] than SI versus R(1,full) with a TI=700-800 ms, which is 200-300 ms longer than the tau(null) (500 ms) of viable myocardium. With such TIs, SI versus R(1,full) yielded CCs of 0.86-0.88. R(1,single) versus R(1,full) yielded a peak CC of 0.96 at TI=700-900 ms. Mean deviations of R(1,single) from R(1,full) were below 5% for TIs between 500 and 1000 ms. Ex vivo, where tau(null) was 300 ms, the advantage of correction with SI(Eq) was not in the improvement of linear correlation but more in the reduction of scatter. Peak CCs for SI versus R(1,full) and COSIM versus R(1,full) at TI=500 ms were 0.96 for both. The ex vivo CC for R(1,single) versus R(1,full) at TI=500 ms was 0.98. Mean deviations of R(1,single) from R(1,full) were below 5% for TIs between 400 and 700 ms. CONCLUSIONS: Once the corresponding SI(Eq) map is obtained from a control stack, R(1) can be obtained accurately, using only a single IR image and without the need for a stack of TI-varied images. This approach could be applied in various dynamic MRI studies where short measurement time, once the dynamics has started, is of essence. When using this method with IR-prepared T(1)-weighted images, it is essential that the single TI be chosen such that the longitudinal relaxation in all voxels of interest would have passed tau(null). SI(Eq) maps are also useful in eliminating confounders from MR images to allow obtaining SI values that reflect more faithfully the relaxation parameter (R(1)) sought.  相似文献   

3.
Depth and orientational dependencies of microscopic magnetic resonance imaging (MRI) T(2) and T(1ρ) sensitivities were studied in native and trypsin-degraded articular cartilage before and after being soaked in 1 mM Gd-DTPA(2-) solution. When the cartilage surface was perpendicular to B(0), a typical laminar appearance was visible in T(2)-weighted images but not in T(1ρ)-weighted images, especially when the spin-lock field was high (2 kHz). At the magic angle (55°) orientation, neither T(2)- nor T(1ρ)-weighted image had a laminar appearance. Trypsin degradation caused a depth- and orientational-dependent T(2) increase (4%-64%) and a more uniform T(1ρ) increase at a sufficiently high spin-lock field (55%-81%). The presence of the Gd ions caused both T(2) and T(1ρ) to decrease significantly in the degraded tissue (6%-38% and 44%-49%, respectively) but less notably in the native tissue (5%-10% and 16%-28%, respectively). A quantity Sensitivity was introduced that combined both the percentage change and the absolute change in the relaxation analysis. An MRI experimental protocol based on two T(1ρ) measurements (without and with the presence of the Gd ions) was proposed to be a new imaging marker for cartilage degradation.  相似文献   

4.
This study compared region of interest (ROI) and voxel-based analysis (VBA) methods to determine the optimal method of myelin water fraction (MWF) analysis. Twenty healthy controls were scanned twice using a multi-echo T2 relaxation sequence and ROIs were drawn in white and grey matter. MWF was defined as the fractional signal from 15 to 40 ms in the T2 distribution. For ROI analysis, the mean intensity of voxels within an ROI was fit using non-negative least squares. For VBA, MWF was obtained for each voxel and the mean and median values within an ROI were calculated. There was a slightly higher correlation between Scan 1 and 2 for the VBA method (R2=0.98) relative to the ROI method (R2=0.95), and the VBA mean square difference between scans was 300% lower, indicating VBA was the most consistent between scans. For the VBA method, mean MWF was found to be more reproducible than median MWF. As the VBA method is more reproducible and gives more options for visualization and analysis of MWF, it is recommended over the ROI method of MWF analysis.  相似文献   

5.
Previous studies have shown that T2(dagger)-weighted magnetic resonance images acquired using localization by adiabatic selective refocusing (LASER) can provide early tissue contrast following ischemia, possibly due to alterations in microscopic susceptibility within the tissue. The purpose of this study was to make a direct in vivo comparison of T2-, T2(dagger)- and diffusion-weighted image contrast during acute ischemia. Acute middle cerebral artery (MCA) occlusion was attempted in 14 rats using a modified Tamura approach incorporating electrocoagulation of the left MCA. T2(dagger)-weighted LASER images (Echo Time [TE]=108 ms), T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) images (TE=110 ms) and diffusion-weighted images (b value=105 s/mm(2)) were acquired at 4 T within 1.5 h of ischemia onset. Tissue contrast in the MCA territory was quantified for histologically verified ischemic tissue (n=6) and in sham controls (n=4). T2(dagger)-weighted LASER images demonstrated greater contrast compared to the T2-weighted CPMG images, and more focal contrast compared to the diffusion-weighted images, suggesting different contrast mechanisms were involved.  相似文献   

6.
The objective was to measure the effect of 100% oxygen inhalation on T1 relaxation times in skeletal muscle. Healthy volunteers were scanned using three different MRI protocols while breathing medical air and 100% oxygen. Measurements of T1 were made from regions of interest (ROIs) within various skeletal muscle groups. Dynamic data of subjects breathing a sequence of air-oxygen-air allowed the calculation of characteristic wash-in and -out times for dissolved oxygen in muscle. Contrary to previous findings, a statistically significant decrease in T1 in skeletal muscle was observed due to oxygen inhalation. We report approximate baseline characteristic values for the response of skeletal muscle to oxygen inhalation. This measurement may provide new biomarkers for evaluation of oxygen delivery and consumption in normal and diseased skeletal muscle.  相似文献   

7.
Dynamic contrast-enhanced (DCE) T(1)-weighted magnetic resonance imaging (MRI) is a powerful tool capable of providing quantitative assessment of contrast uptake and characterization of microvascular structure in human gliomas. The kinetics of the bolus injection doped with increasing concentrations of gadopentate dimeglumine (Gd-DTPA) depends on tissue as well as pulse sequence parameters. A simple method is described that overcomes the limitation of relative signal increase measurement and may lead to improved accuracy in quantification of perfusion indices of glioma. Based on an analysis of the contrast behavior of spoiled gradient-recalled echo sequence; a parameter K with arbitrary unit 5.0 is introduced, which provides a better approximation to the differential T(1) relaxation rate. DCE-MRI measurements of relative cerebral blood volume (rCBV) and cerebral blood flow (rCBF) were calculated in 25 patients with brain tumors (15=high-grade glioma, 10=low-grade glioma). The mean rCBV was 6.46 +/- 2.45 in high-grade glioma and 2.89 +/- 1.47 in the low-grade glioma. The rCBF was 3.94 +/- 1.47 in high-grade glioma while 2.25 +/- 0.87 in low-grade glioma. A significant difference in rCBF and rCBV was found between high- and low-grade gliomas. This simple and robust technique reveals the complexity of tumor vasculature and heterogeneity that may aid in therapeutic management especially in nonenhancing high-grade gliomas. We conclude that the precontrast medium steady-state residue parameter K may be useful in improved quantification of perfusion indices in human glioma using T(1)-weighted DCE-MRI.  相似文献   

8.
席发元  吕会议 《物理学报》2013,62(1):16104-016104
绝缘材料毛细孔的离子导向效应研究在被动型离子光学元件开发方面有着重要的意义.进行了150keVO3+,0.32 MeVO+,2 MeV O2+等具有不同Ep/q值的离子与氧化铝毛细孔的相互作用研究.对于150keVO3+入射离子,离子沿毛细孔穿越的过程中存在着导向效应:随着毛细孔相对于入射离子束的偏转,入射离子依然能够显著地穿过毛细孔,而且保持电荷态不变;出射离子的角分布谱发生与毛细孔偏转相同的偏移;毛细孔不同偏转角度时的穿透率可以很好地被高斯函数拟合.对于0.32 MeV O+,2 MeV O2+离子入射氧化铝毛细孔,没有导向效应发生.导向效应能够发生的入射离子的Ep/q最大值小于320 kV.  相似文献   

9.
T2* measurements in human brain at 1.5, 3 and 7 T   总被引:1,自引:0,他引:1  
Measurements have been carried out in six subjects at magnetic fields of 1.5, 3 and 7 T, with the aim of characterizing the variation of T2* with field strength in human brain. Accurate measurement of T2* in the presence of macroscopic magnetic field inhomogeneity is problematic due to signal decay resulting from through-slice dephasing. The approach employed here allowed the signal decay due to through-slice dephasing to be characterized and removed from data, thus facilitating an accurate measurement of T2* even at ultrahigh field. Using double inversion recovery turbo spin-echo images for tissue classification, an analysis of T2* relaxation times in cortical grey matter and white matter was carried out, along with an evaluation of the variation of T2* with field strength in the caudate nucleus and putamen. The results show an approximately linear increase in relaxation rate R2* with field strength for all tissues, leading to a greater range of relaxation times across tissue types at 7 T that can be exploited in high-resolution T2*-weighted imaging.  相似文献   

10.
To acquire high-resolution T(1)-weighted images of the liver in rats, for which breath-holding cannot be ensured, respiratory triggering is essential. At the respiratory rate of 30-60 times/min in rats, however, T(1)-weighted images cannot be obtained with simple triggering. As a simple solution to this, we applied multiple repeated acquisitions with one trigger signal. With this technique, sufficient T(1) contrast could be easily achieved in rat liver enhanced by gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid infusion.  相似文献   

11.

Objective

The objective of this study was to develop quantitative T-weighted magnetic resonance imaging methodology for the detection and characterization of cartilage degeneration in a rabbit anterior cruciate ligament (ACL) transection model.

Methods

The right knee ACLs of 18 adult female New Zealand white rabbits were transected. The left knee joint served as a sham control. The rabbits were euthanized at 3 (Group 1), 6 (Group 2) and 12 (Group 3) weeks postoperatively. High-resolution 3D fat-saturated spoiled gradient echo images and T-weighted images were obtained in both the sagittal and axial planes at 3 T using a quadrature wrist coil. Following MR analysis, histological slides from the lateral femoral condyle cartilage were graded using the Mankin grading system.

Results

For all three groups, the average overall T values were significantly higher in the ACL-transected knee compared to control knee, and the percentage differences in T values between ACL-transected and control increased with the duration of time after transection. The average Mankin score for ACL-transected knees was higher than that for control for each time point, but this difference was statistically significant only for all groups combined.

Conclusions

This study demonstrates the feasibility of using T-weighted imaging as a useful tool in the detection and quantification of cartilage damage in all knee compartments in an ACL-transected rabbit model of cartilage degeneration.  相似文献   

12.
Objective: Neuromuscular electrical stimulation (NMES) has been noted as an effective pre- contraction for an increase of neural and muscle factors during twitch contractions. However, it is unknown if this intervention is effective for the rate of force development (RFD), which is the ability to increase joint torque strength as quickly as possible, during tetanic contractions. NMES can be safely used by anyone, but, the strength setting of NMES requires attention so as not to cause pain. Therefore, the purpose of this study investigated whether NMES at less painful levels was effective for RFD during tetanic contractions. We also investigated effect activation by analyzing electromyogram (EMG) and RFD for each phase. Methods: Eighteen healthy males were studied. Before and after NMES intervention at 10% or 20% maximal voluntary isometric contraction (MVIC) level (10%NMES, 20%NMES respectively), EMG activity and the initial phase (30-, 50-, 100-, and 200-msec) RFD were measured. Visual analog scale (VAS) was also measured as an indicator of pain during each NMES. Results: 20%NMES increased EMG activity and 30-, 50-, and 100-msec of RFD during MVIC, but could not improve 200 msec of RFD. However, 10%NMES could be failed to increase all phases RFD, but VAS was lower than that of 20% NMES. Conclusion: These results suggest that muscle pre-contraction using 20%NMES could induce moderate pain, but could be an effective intervention to improve RFD via neural factor activity.  相似文献   

13.
The purpose of this study is to test the performance of multispin nitroxyl contrast agents in improving the sensitivity of MR detection for nitroxyl contrast agents. The relation between T(1) relaxivity and the number of paramagnetic centers in a molecule was investigated. Compound 1 is a single molecule of methoxycarbonyl-PROXYL (MC-PROXYL). Two and three MC-PROXYL molecules were chemically coupled to obtain Compounds 2 and 3, which have two and three nitroxyl spins in the molecule, respectively. A good linear relation, the slope of which increased depending on the number of nitroxyl spins in the molecule, was obtained between T(1)-weighted (fast low-angle shot) MR image contrast enhancement at 7 T and the concentration of nitroxyl contrast agents. T(1)-weighted MR image contrast enhancement and T(1) relaxivity levels of nitroxyl contrast agents were increased depending on the number of nitroxyl spins in the molecule. Multicoupling nitroxyl molecules can enhance the T(1)-weighted contrast effect while maintaining the quantitative behavior of the molecule for up to three spins.  相似文献   

14.
Novel conjugates of narrow molecular weight distribution of chitosan oligosaccharides (CSn; n=6, 8, 11) with manganese-diethylenetriaminepentaacetic acid (Mn-DTPA) as potential magnetic resonance imaging (MRI) contrast agents were synthesized. The structures were characterized by means of Fourier transform infrared spectra, 13C nuclear magnetic resonance, size exclusion chromatography and inductively coupled plasma atomic emission spectrometry. The characterization results showed that Mn-DTPA was successfully linked to aminated CSn by an amide function. The magnetic properties were characterized by in vitro and T1-weighted FLASH image experiments. Relaxivities studies indicated that Mn-DTPA-CSn (n=8, 11) provided higher relaxivity, either in aqueous or bovine serum albumin solution (0.725 mM), than commercial contrast agent Gd-DTPA. The stability results showed that Mn-DTPA-CSn in aqueous were stable enough to prevent MnII ions from releasing. The preliminary in vitro and T1-weighted FLASH image studies suggested that Mn-DTPA-CSn had the advantage of becoming promising MRI contrast agents.  相似文献   

15.
This study investigated the feasibility of an MRI protocol providing whole-body T2* maps at 1.5 T. Seven healthy volunteers (mean age=30.1+/-3.7, three women and four men) and two patients (both male, 53 and 46 years old) affected by transfusion-dependent anemias participated in the study. Coronally oriented images of five subsequent body levels were acquired using a fat-suppressed multiecho 2D gradient-echo sequence (12 echo times ranging from 4.8 to 76.3 ms were selected) and afterwards composed. Parametrical T2* maps of the whole body were reconstructed on a pixel-by-pixel basis. For both, healthy volunteers and patients, representative T2* values were computed from extended regions of interest (ROIs). Good-quality whole-body T2* maps were computed in all volunteers and patients. In healthy volunteers, T2* values were assessed in the cerebral white (58.5+/-4.2 ms) and gray (81.4+/-5.5 ms) matter, liver (34.3+/-7.0 ms), spleen (63.5+/-3.3 ms), kidneys (65.4+/-10.3 ms) and skeletal muscles (~30 ms). The liver presented faster relaxation rates in males as compared to females. One patient (serum ferritin concentration=927 microg/dl) showed shortened T2* values in liver (3.6+/-5.5 ms), spleen (3.1+/-4.8 ms), kidneys (11.1+/-7.1 ms) and muscles (25.1+/-3.4 ms). The second patient (serum ferritin concentration=346 microg/dl) presented reduced T2* values in liver (3.9+/-7.3 ms), spleen (20.1+/-9.8 ms) and kidneys (24.6+/-7.7 ms). The presented technique may find clinical application in the assessment of the iron burden in the entire body, and in monitoring of chelation therapies in patients treated with frequent blood transfusions.  相似文献   

16.
Two-dimensional (2D)-SE, 2D-GE and tri-dimensional (3D)-GE two-point T(1)-weighted MRI methods were evaluated in this study in order to maximize the accuracy of temperature mapping of bread dough during thermal processing. Uncertainties were propagated throughout each protocol of measurement, and comparisons demonstrated that all the methods with comparable acquisition times minimized the temperature uncertainty to similar extent. The experimental uncertainties obtained with low-field MRI were also compared to the theoretical estimations. Some discrepancies were reported between experimental and theoretical values of uncertainties of temperature; however, experimental and theoretical trends with varying parameters agreed to a large extent for both SE and GE methods. The 2D-SE method was chosen for further applications on prefermented dough because of its lower sensitivity to susceptibility differences in porous media. It was applied for temperature mapping in prefermented dough during chilling prior to freezing and compared locally to optical fiber measurements.  相似文献   

17.
Three recent independent attempts at deducing the W(001)-(1 × 1) surface structure by LEED beam intensity analysis have yielded contractions of the topmost layer spacing of 6 ± 6%, 11 ± 2%, 4.4 ± 3% normal to the surface plane. We investigate possible reasons for the discrepancies by comparing published experimental and theoretical profiles of these workers as well as our own. Our main conclusions are that the direct comparison of experimental data of different investigators shows deviations which are comparable to the changes in the calculated profiles for various surface contractions. Also the deviations between calculated intensity profiles using different (but still realistic) assumed scatteting potentials are comparable to the changes in the calculated profiles for various surface contractions. The main uncertainty in the scattering potential is the choice between the Slater free electron exchange-correlation term (coefficient α = 1) or the Kohn-Sham version (α = 23) or a value in between. For tungsten the corrections due to relativistic atomic scattering must also be considered. These uncertainties in the calculated and experimental profiles lead to the conclusion that the surface layer contraction of W(001)-(1 × 1) is not known at the present time. To assess the potential of LEED in deducing surface structures of this type further comprehensive analyses are required where the uncertainties in the theoretical scattering potential are also examined.  相似文献   

18.
Gradient recalled echo (GRE) images are sensitive to both paramagnetic deoxyhaemoglobin concentration (via T2*) and flow (via T1*). Large GRE signal intensity increases have been observed in subcutaneous tumors during carbogen (5% carbon dioxide, 95% oxygen) breathing. We term this combined effect flow and oxygenation-dependent (FLOOD) contrast. We have now used both spin echo (SE) and GRE images to evaluate how changes in relaxation times and flow contribute to image intensity contrast changes. T1-weighted images, with and without outer slice suppression, and calculated T2, T2* and "flow" maps, were obtained for subcutaneous GH3 prolactinomas in rats during air and carbogen breathing. T1-weighted images showed bright features that increased in size, intensity and number with carbogen breathing. H&E stained histological sections confirmed them to be large blood vessels. Apparent T1 and T2 images were fairly homogeneous with average relaxation times of 850 ms and 37 ms, respectively, during air breathing, with increases of 2% for T1 and 11% for T2 during carbogen breathing. The apparent T2* over all tumors was very heterogeneous, with values between 9 and 23 ms and localized increases of up to 75% during carbogen breathing. Synthesised "flow" maps also showed heterogeneity, and regions of maximum increase in flow did not always coincide with maximum increases in T2*. Carbogen breathing caused a threefold increase in arterial rat blood PaO2, and typically a 50% increase in tumor blood volume as measured by 51Cr-labelled RBC uptake. The T2* increase is therefore due to a decrease in blood deoxyhaemoglobin concentration with the magnitude of the FLOOD response being determined by the vascular density and responsiveness to blood flow modifiers. FLOOD contrast may therefore be of value in assessing the magnitude and heterogeneity of response of individual tumors to blood flow modifiers for both chemotherapy, antiangiogenesis therapy in particular, and radiotherapy.  相似文献   

19.
The aim of this study was to investigate the utility of the water T(2) values of malignant breast lesions in predicting response after the first and second cycles of neoadjuvant chemotherapy (NAC), both alone and in combination with lesion volumes. Thirty-five patients were scanned before the commencement of chemotherapy and again after the first, second and final treatment cycles. Two methods of obtaining lesion T(2) were used: imaging, where a series of T(2)-weighted images was acquired (T(R)/T(E)=1000/30, 60, 90 and 120 ms), and spectroscopy, where the T(2) value of unsuppressed water signal was determined with a multiecho sequence (T(R)=1.5 s; initial T(E)=35 ms; 64 steps of 2.5 ms; 2 unsuppressed acquisitions per T(E)). Lesion volumes were computed from contrast-enhanced 3D fat-suppressed images. The study found that, using the imaging method of obtaining T(2), the ratio of the product of lesion T(2) and volume after the second cycle of NAC to pretreatment value is a good predictor of ultimate lesion response, defined as a > or =65% reduction in tumor volume after the final treatment cycle, with positive and negative predictive values of 95.5% and 84.6%, respectively.  相似文献   

20.
The objective of this study was to describe magnetic resonance (MR) findings with a 1.5T imager for hepatic parenchymal changes after proton beam radiotherapy. Thirty-two patients who received proton radiotherapy with doses of 50-87 Gy underwent MR imaging 1-75 months (mean 22 months) after the start of irradiation. Axial T(2), T(1)-weighted imaging, and a dynamic study after a gadolinium injection were performed. The irradiated areas showed hypointense in T(1)-weighted images, hyperintense in T(2)-weighted images, and intense and prolonged enhancement on the dynamic study (maximum relative enhancement 441.8%+/-263.3 vs. surrounding liver 145.6%+/-67.7, p<0.0001). T(2) values of the irradiated areas were 50.6 to 65.8 msec greater than in the surrounding liver (p<0.005). The values increased with time, being significantly greater 13 months or longer after the beginning of the therapy than after a period of less than 3 months (p<0.05). Pathologic examinations (n = 3) indicated that the irradiated areas were composed of collapsed lobules with hepatic small vein occlusions, and rich extracellular matrices which retained extracellular fluid. MR imaging can demonstrate hepatic parenchymal changes after proton beam radiotherapy, and show the changes are irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号