首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange‐coupled nanocomposites of hard magnetic face‐centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct‐FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct‐FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct‐FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.  相似文献   

2.
Iron-platinum alloy nanoparticles (FePt NPs) are extremely promising candidates for the next generation of contrast agents for magnetic resonance (MR) diagnostic imaging and MR-guided interventions, including hyperthermic ablation of solid cancers. FePt has high Curie temperature, saturation magnetic moment, magneto-crystalline anisotropy, and chemical stability. We describe the synthesis and characterization of a family of biocompatible FePt NPs suitable for biomedical applications, showing and discussing that FePt NPs can exhibit low cytotoxicity. The importance of engineering the interface of strongly magnetic NPs using a coating allowing free aqueous permeation is demonstrated to be an essential parameter in the design of new generations of diagnostic and therapeutic MRI contrast agents. We report effective cell internalization of FePt NPs and demonstrate that they can be used for cellular imaging and in vivo MRI applications. This opens the way for several future applications of FePt NPs, including regenerative medicine and stem cell therapy in addition to enhanced MR diagnostic imaging.  相似文献   

3.
Colloidal FePt nanocrystals, 6 nm in diameter, were synthesized and then coated with silica (SiO2) shells. The silica shell thickness could be varied from 10 to 25 nm. As-made FePt@SiO2 nanocrystals have low magnetocrystalline anisotropy due to a compositionally disordered FePt core. When films of FePt@SiO2 particles are annealed under hydrogen at 650 degrees C or above, the FePt core transforms to the compositionally ordered L1(0) phase, and superparamagnetic blocking temperatures exceeding room temperature are obtained. The SiO2 shell prevents FePt coalescence at annealing temperatures up to approximately 850 degrees C. Annealing under air or nitrogen does not induce the FePt phase transition. The silica shell limits magnetic dipole coupling between the FePt nanocrystals; however, low temperature (5 K) and room temperature magnetization scans show slightly constricted hysteresis loops with coercivities that decrease systematically with decreased shell thickness, possibly resulting from differences in magnetic dipole coupling between particles.  相似文献   

4.
Polymer mediated self-assembly of magnetic nanoparticles   总被引:2,自引:0,他引:2  
We present a simple polymer-mediated process of assembling magnetic FePt nanoparticles on a solid substrate. Alternatively absorbing the PEI molecule and FePt nanoparticles on a HO-terminated solid surface leads to a smooth FePt nanoparticle assembly with controlled assembly thickness and dimension. Magnetic measurements show that the thermally annealed FePt nanoparticle assembly as thin as three nanoparticle layers is ferromagnetic. The magnetization direction of this thin FePt nanoparticle assembly is readily controlled with the laser-assisted magnetic writing. The reported process can be applied to various substrates, nanoparticles, and functional macromolecules and will be useful for future magnetic nanodevice fabrication.  相似文献   

5.
Tailoring the surface of nanoparticles is essential for biological applications of magnetic nanoparticles. FePt nanoparticles are interesting candidates owing to their high magnetic moment. Established procedures to make FePt nanoparticles use oleic acid and oleylamine as the surfactants, which make them dispersed in nonpolar solvents such as hexane. As a model study to demonstrate the modification of the surface chemistry, stable aqueous dispersions of FePt nanoparticles were synthesized after ligand exchange with mercaptoalkanoic acids. This report focuses on understanding the surface chemistry of FePt upon ligand exchange with mercapto compounds by conducting X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) studies. It was found that the mercapto end displaces oleylamine on the Pt atoms and the carboxylic acid end displaces the oleic acid on the Fe atoms, thus exposing carboxylate and thiolate groups on the surface that provide the necessary electrostatic repulsion to form stable aqueous dispersions of FePt nanoparticles.  相似文献   

6.
以半胱氨酸为配体,采用一锅法简便合成了亲水性的FePt纳米颗粒(NPs).超小的FePtNPs对水中常见有机污染物表现出良好的催化降解性能,以NaBH4为还原剂时可实现对染料罗丹明B(RhB)和有害物质4-硝基苯酚(4-NP)的有效还原;以H2O2为氧化剂时可实现亚甲基蓝(MB)的高效降解.实验结果表明,FePtNPs对3种有机污染物的降解率均高于90%.对Fe Pt原子对之间的协同催化机理进行了探讨,揭示了不同反应体系中微观反应历程和催化机理的区别.磁性测试结果表明,FePt催化剂可以通过外加磁场进行收集并重复利用,解决了催化剂二次污染问题.该研究为设计合成绿色环保催化剂提供了思路.  相似文献   

7.
We report the growth of NaCl-type binary nanocrystal (NC) superlattice membranes by coassembly of FePt and MnO NCs at the liquid-air interface. The constituent FePt NCs were converted into the hard magnetic L1(0) phase by thermal annealing at 650 °C without degradation of the long-range NC ordering. In contrast, both FePt-only NC superlattices and FePt-MnO disordered NC mixtures showed substantial FePt sintering under the same annealing conditions. Our results demonstrate that the incorporation of FePt NCs into binary superlattices can solve the problems of FePt sintering during conversion to the L1(0) phase, opening a new route to the fabrication of ordered ferromagnetic NC arrays on a desired substrate for high-density data storage applications.  相似文献   

8.
We report here a new synthetic route to FePt nanoparticles using a stoichiometric mixture of Na2Fe(CO)4 and Pt(acac)2. The structure of FePt nanoparticles, their size, chemical composition, and magnetic property can be controlled by various synthetic parameters, such as the solvent type, nature, and molar ratio of surfactants and stabilizers, synthesis temperature, and purification process. Partially ordered fct (L10) nanoparticles with room temperature magnetic coercivity can be synthesized directly in tetracosane solution at 389 degrees C. The fcc FePt synthesized in nonadecane can be transformed into the magnetically important fct phase at 430 degrees C without significant particle sintering.  相似文献   

9.
One-step synthesis of FePt nanoparticles with tunable size   总被引:1,自引:0,他引:1  
A one-step synthesis of FePt nanoparticles is reported. The size, composition, and shape of the particles are controlled by varying the synthetic parameters such as molar ratio of stabilizers to metal precursor, addition sequence of the stabilizers and metal precursors, heating rate, heating temperature, and heating duration. An assembly of large (6 nm or greater) FePt nanoparticles, especially oxide-coated FePt nanoparticles, can sustain higher temperature (up to 650 degrees C) annealing without noticeable particle sintering. Room temperature coercivity of an assembly containing discrete FePt dots can reach as high as 1.3 T, a value that is suitable for hard magnetic applications.  相似文献   

10.
Hydrophilic FePt nanoparticles (NPs) have been embedded into the MgO-matrix systems via a sol–gel process to prevent FePt NPs from aggregating and sintering during the heat-treatment process required for the L10 ordering. The chemically ordered L10-phase FePt can be obtained after annealing at 700 °C for 60 min in atmosphere containing H2. The effect of the pH value of MgO collosol and FePt nanocrystal loading amount on the structure, morphology, and magnetic properties of FePt/MgO nanocomposites has been investigated. The neutral pH value of 7 in MgO sol is beneficial to stabilize FePt NPs and obtain higher chemical ordering parameter S for the face-centered tetragonal -FePt/MgO nanocomposites with larger coercivity. The FePt NPs loading amount also plays a key role in tuning the microstructure and magnetic properties of the nanocomposites. The relatively higher FePt NPs loading with FePt/MgO molar ratio (RFM) of 1:2 leads to relatively perfect hexagonal assembly and pure L10 phase. When the RFM is 1:5 and 1:10, the MgO-matrix in nanocomposites causes the Fe element loss in FePt NPs along with formation of secondary phases such as magnesioferrite or Pt3Fe during the annealing process. Under optimal processing of neutral pH value of 7 and RFM of 1:2, the presence of MgO matrix produces more homogeneous microstructures and better magnetic properties with higher room-temperature coercivity (H C = 4.65 kOe).  相似文献   

11.
Direct synthesis of fct-structured FePt nanoparticles was successfully achieved by using poly(N-vinyl-2-pyrrolidone) as a protective reagent at lower temperature than the case using low molecular weight ligands as a protective reagent. Experimental data suggest that a transformation of FePt nanoparticles from face-centered cubic to face-centered tetragonal (fct) structure takes place at reaction temperature of 261 degrees C. The results of XRD and the magnetic properties exhibit that the FePt nanoparticles synthesized at 261 degrees C have partially ordered fct-structure and a ferromagnetic behavior at room temperature.  相似文献   

12.
Self-assembled FePt/MnO nanoparticles with different morphology and size were synthesized with a polyol process. With the MnO coating, FePt nanoparticles exhibit a high blocking temperature and magnetic moment. The low-temperature hysteresis loop of FePt nanoparticles can be shifted through the AFM pinning of the MnO shell. The aggregation of FePt nanoparticles during the L10 phase transformation can be significantly decreased by coating with the MnO shell.  相似文献   

13.
After conjugation to vancomycin (Van), chemically stable and highly magnetic anisotropic FePt magnetic nanoparticles (approximately 4 nm) become water-soluble and capture E. coli at 15 cfu mL(-1).  相似文献   

14.
Magnetic nanoparticle assembly on surfaces using click chemistry   总被引:1,自引:0,他引:1  
Controlled assembly of ferromagnetic nanoparticles on surfaces is of crucial importance for a range of spintronic and data storage applications. Here, we present a novel method for assembling monolayers of ferromagnetic FePt nanoparticles on silicon oxide substrates using "click chemistry". Reaction of alkyne-functionalized FePt nanoparticles with azide-terminated self-assembled monolayers (SAMs), on silicon oxide, leads to the irreversible attachment of magnetic nanoparticles to the surface via triazole linkers. Based on this covalent interaction, well-packed monolayers of FePt nanoparticles were prepared and nanoparticle patterns are generated on surfaces via microcontact printing (μCP).  相似文献   

15.
This paper describes a new approach for making face-centered tetragonal (fct) FePt nanoparticles with a diameter of 17 nm and granular films from Pt@Fe2O3 core-shell nanoparticle precursors. The core-shell nanoparticles were converted to fct FePt through a reduction and alloy formation process at enhanced temperatures. The Fe and Pt elemental analysis was conducted on both individual nanoparticles and granular films using energy-dispersive X-ray (EDX) spectroscopy. Our convergent evidence from selected area electron diffraction (SAED), powder X-ray diffraction (PXRD), and EDX analysis indicates that the final products are fct FePt alloys. The fct FePt films have coercivities of 8.0-9.1 kOe at 5 K and 7.0 kOe at 300 K measured by a SQUID magnetometer. These values depend on the conversion temperatures of Pt@Fe2O3 nanoparticles. Unlike the previously synthesized disordered face-centered cubic (fcc) FePt nanoparticles with diameters of 4-6 nm (Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989), the FePt nanoparticles presented in this work not only possess the preferred fct phase but also are in a size range that is expected to be ferromagnetic and have high coercivity, which is important to the practical applications in ultrahigh density data storage media and magnetic nano devices.  相似文献   

16.
Employing dibenzo-24-crown-8-ether (DB24C8) as a phase-transfer catalyst, monodispersed fluorescent lanthanon-doped magnetic FePt:RE (RE=Eu, Dy, and Ce) nanoparticles about 3 nm in size were synthesized through the reduction of H2PtCl6.6H2O, Fe2(C2O4)3.5H2O, and RE(NO3)3 (RE=Eu, Dy, and Ce) by propylene glycol using oleic acid as the stabilizer in the solvent-thermal system. The conversion of the as-synthesized chemically disordered fcc FePt:RE nanoparticles to a chemically ordered L1 0 structure occurred after annealing treatment at 873 K, and was simultaneously accompanied by a coercivity increase. It is interesting that the amorphous formation trend is strengthened in an europium-doped FePt:Eu alloy accompanied by enhancement of the coercive force. Its thermal stability indicated that the addition of europium can inhibit the phase transformation. Moreover, the optical measurement results proved that FePt:Dy alloy nanoparticles have fluorescent properties.  相似文献   

17.
Prevention of nanoparticle coalescence under high-temperature annealing   总被引:2,自引:0,他引:2  
An effective method of employing 3-aminopropyldimethylethoxysilane linker molecules to stabilize 4.4 nm FePt nanoparticle monolayer films on a SiO2 substrate as well as to prevent coalescence of the particles under 800 degrees C annealing is reported. As-deposited FePt nanoparticle films in chemically disordered face-centered-cubic phase transform to mostly chemically ordered L1 0 structure after annealing, while the nanoparticles are free from serious coalescence. The method may fulfill the pressing need to prevent nanoparticle coalescence under high-temperature annealing for the development of FePt nanoparticle based products, such as ultrahigh-density magnetic recording media and novel memory devices.  相似文献   

18.
We report the evaluation of cytotoxicity of a new type of engineered nanomaterials, FePt@CoS(2) yolk-shell nanocrystals, synthesized by the mechanism of the Kirkendall effect when FePt nanoparticles serve as the seeds. The cytotoxicity of FePt@CoS(2) yolk-shell nanocrystals, evaluated by MTT assay, shows a much lower IC(50) (35.5 +/- 4.7 ng of Pt/mL for HeLa cell) than that of cisplatin (230 ng of Pt/mL). In the control experiment, cysteine-modified FePt nanoparticles exhibit IC50 at 12.0 +/- 0.9 microg of Pt/mL. Transmission electron microscopy confirms the cellular uptake of FePt@CoS(2) nanocrystals, and the magnetic properties analysis (SQUID) proves the release of FePt nanoparticles from the yolk-shell nanostructures after cellular uptake. These results are significant because almost none of the platinum-based complexes produced for clinical trials in the past 3 decades have shown higher activity than that of the parent drug, cisplatin. The exceptionally high toxicity of FePt@CoS(2) yolk-shell nanocrystals (about 7 times higher than that of cisplatin in terms of Pt) may lead to a new design of an anticancer nanomedicine.  相似文献   

19.
Monodisperse FePt nanocubes are synthesized at 205 degrees C by controlling decomposition of Fe(CO)5 and reduction of Pt(acac)2 and addition sequence of oleic acid and oleylamine. Different from the assembly of the sphere-like FePt nanoparticles, which shows 3D random structure orientation, self-assembly of the FePt nanocubes leads to a superlattice array with each FePt cube exhibiting (100) texture. Thermal annealing converts the chemically disordered fcc FePt to chemically ordered fct FePt, and the annealed assembly shows a strong (001) texture in the directions both parallel and perpendicular to the substrate. This shape-controlled synthesis and self-assembly offers a promising approach to fabrication of magnetically aligned FePt nanocrystal arrays for high density information storage and high performance permanent magnet applications.  相似文献   

20.
We have fabricated biocompatible nanofiber hydrogels with diverse sizes of ferritin clusters according to the mixing temperature of solutions employing electrospinning. Poly(vinyl alcohol) (PVA) was used as a polymeric matrix for fabricating nanocomposites. By thermal means we controlled the interaction between the host PVA hydrogel and the protein shell on ferritin bionanoparticles to vary the size and concentration of ferritin clusters. The clustering of ferritin was based on the partial unfolding of a protein shell of ferritin. By studying the magnetic properties of the PVA/ferritin nanofibers according to the mixing temperature of the PVA/ferritin solutions, we confirmed that the clustering process of the ferritin was related to changes in the superparamagnetic properties and magnetic resonance imaging (MRI) contrast of the PVA/ferritin nanofibers. PVA/ferritin nanofiber hydrogels with diverse spatial distributions of ferritin nanoparticles are applicable as MRI-based noninvasive detectable cell culture scaffolds and as artificial muscles because of their improved superparamagnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号