首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3D-QSAR and molecular modeling of HIV-1 integrase inhibitors   总被引:1,自引:0,他引:1  
Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were applied on a series of inhibitors of HIV-1 integrase with respect to their inhibition of 3-processing and 3-end joining steps in vitro.The training set consisted of 27 compounds belonging to the class of thiazolothiazepines. The predictive ability of each model was evaluated using test set I consisting of four thiazolothiazepines and test set II comprised of seven compounds belonging to an entirely different structural class of coumarins. Maximum Common Substructure (MCS) based method was used to align the molecules and this was compared with other known methods of alignment. Two methods of 3D QSAR: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were analyzed in terms of their predictive abilities. CoMSIA produced significantly better results for all correlations. The results indicate a strong correlation between the inhibitory activity of these compounds and the steric and electrostatic fields around them. CoMSIA models with considerable internal as well as external predictive ability were obtained. A poor correlation obtained with hydrophobic field indicates that the binding of thiazolothiazepines to HIV-1 integrase is mainly enthalpic in nature. Further the most active compound of the series was docked into the active site using the crystal structure of integrase. The binding site was formed by the amino acid residues 64-67, 116, 148, 151-152, 155-156, and 159. The comparison of coefficient contour maps with the steric and electrostatic properties of the receptor shows high level of compatibility.  相似文献   

2.
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.  相似文献   

3.
4.
王丽东  王存新 《化学学报》2008,66(7):817-822
HIV-1整合酶(IN)通过依赖金属离子的两步反应将病毒DNA整合入宿主细胞过程中。结合于HIV-1上的金属离子个数的变化直接影响整合酶与抑制剂之间的结合。本工作用同源模建方法搭建了每条单链核心区具有两个Mg2+ 的(2Mg-IN-Core)和具有一个Mg2+ 的HIV-1 IN二聚体核心区模型(1Mg-IN-Core)。分子对接分别得到它们与硫氮硫扎平类化合物能量较低的复合物结构,把对接结果进行了比较。研究发现:当整合酶中结合的Mg2+个数改变时,它与抑制剂的结合模式也会发生很大的变化;抑制剂能够特异的且稳定的与2Mg-IN-Core模型的活性位点结合;同时与ASP64和GLU152螯合的那个Mg2+离子对于硫氮硫扎平抑制剂与整合酶上的结合有很大的影响。2Mg-IN-Core模型与抑制剂的复合物平均结构进行了2000 ps的 分子动力学模拟,分析发现同时与ASP64及ASP116螯合的Mg2+与IN蛋白形成了四个稳定的螯合键;同时与ASP64及GLU152螯合的Mg2+可与IN结合、也可与抑制剂形成稳定的配位键,这个Mg2+对IN与硫氮硫扎平抑制剂之间的结合有较大影响。  相似文献   

5.
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009 , 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self‐consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree–Fock–Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self‐consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave‐function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Comparative molecular similarity indices analysis (CoMSIA), a three-dimensional quantitative structure activity relationship (3D QSAR) paradigm, was used to examine the correlations between the calculated physicochemical properties and the in vitro activities (3'-processing and 3'-strand transfer inhibition) of a series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors. The training set consisted of 34 molecules from five structurally diverse classes: salicylpyrazolinones, dioxepinones, coumarins, quinones, and benzoic hydrazides. The data set was aligned using extrema of molecular electrostatic potentials (MEPs). The predictive ability of the resultant model was evaluated using a test set comprised of 7 molecules belonging to a different structural class of thiazepinediones. A CoMSIA model using an MEP-based alignment showed considerable internal as well external predictive ability (r2(cv) = 0.821, r2(pred) = 0.608 for 3'-processing; and r2(cv) = 0.759, r2(pred.) = 0.660 for 3'-strand transfer).  相似文献   

7.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

8.
Using the polarizable molecular mechanics method SIBFA, we have performed a search for the most stable binding modes of D- and L-thiomandelate to a 104-residue model of the metallo-beta-lactamase from B. fragilis, an enzyme involved in the acquired resistance of bacteria to antibiotics. Energy balances taking into account solvation effects computed with a continuum reaction field procedure indicated the D-isomer to be more stably bound than the L-one, conform to the experimental result. The most stably bound complex has the S(-) ligand bridging monodentately the two Zn(II) cations and one carboxylate O(-) H-bonded to the Asn193 side chain. We have validated the SIBFA energy results by performing additional SIBFA as well as quantum chemical (QC) calculations on small (88 atoms) model complexes extracted from the 104-residue complexes, which include the residues involved in inhibitor binding. Computations were done in parallel using uncorrelated (HF) as well as correlated (DFT, LMP2, MP2) computations, and the comparisons extended to corresponding captopril complexes (Antony et al., J Comput Chem 2002, 23, 1281). The magnitudes of the SIBFA intermolecular interaction energies were found to correctly reproduce their QC counterparts and their trends for a total of twenty complexes.  相似文献   

9.
O-glycoprotein 2-acetamino-2-deoxy-beta- d-glucopyranosidase ( O-GlcNAcase) hydrolyzes 2-acetamido-2-deoxy-beta- d-glucopyranose ( O-GlcNAc) residues of serine/threonine residues of modified proteins. O-GlcNAc is present in many intracellular proteins and appears to have a role in the etiology of several diseases including cancer, Alzheimer's disease, and type II diabetes. In this work, we have carried out molecular dynamics simulations using a hybrid quantum mechanics/molecular mechanics approach to determine the binding of two potent inhibitors, PUGNAc and NAG, with a bacterial O-GlcNAcase. The results of these simulations show that Asp-401, Asp-298, and Asp-297 residues play an important role in the protein-inhibitor interactions. These results might be useful to design compounds with more interesting inhibitory activity on the basis of its three-dimensional structure.  相似文献   

10.
A major challenge in computer-aided drug design is the accurate estimation of ligand binding affinity. Here, a new approach that combines the adaptive steered molecular dynamics (ASMD) and partial atomic charges calculated by semi-empirical quantum mechanics (SQMPC), namely ASMD-SQMPC, is suggested to predict the ligand binding affinities, with 24 HIV-1 protease inhibitors as testing examples. In the ASMD-SQMPC, the relative binding free energy (ΔG) is reflected by the average maximum potential of mean force (<PMF>max) between bound and unbound states. The correlation coefficient (R2) between the <PMF>max and experimentally determined ΔG is 0.86, showing a significant improvement compared with the conventional ASMD (R2 = 0.52). Therefore, this study provides an efficient approach to predict the relative ΔG and reveals the significance of precise partial atomic charges in the theoretical simulations.  相似文献   

11.
As one of the three viral encoded enzymes of HIV-1 infection, HIV-1 integrase has become an attractive drug target for the treatment. Diketoacid compounds (DKAs) are one kind of potent and selective inhibitors of HIV-1 IN. In the present work, two three-dimensional QSAR techniques (CoMFA and CoMSIA) were employed to correlate the molecular structure with the activity of inhibiting the strand transfer for 147 DKAs. The all-oritation search (AOS) and all-placement search (APS) were used to optimize the CoMFA model. The diketo and keto-enol tautomers of DKAs were also used to establish the CoMFA models. The results indicated that the enol was the dominant conformation in the HIV-1 IN and DKAs complexes. It can provide a new method and reference to identify the bioactive conformation of drugs by using QSAR analysis. The best CoMSIA model, with five fields combined, implied that the hydrophobic field is very important as well as the steric and electrostatic fields. All models indicated favorable internal validation. A comparative analysis with the three models demonstrated that the CoMFA model seems to be more predictive. The contour maps could afford steric, electrostatic, hydrophobic and H-bond information about the interaction of ligand-receptor complex visually. The models would give some useful guidelines for designing novel and potent HIV-1 integrase inhibitors.  相似文献   

12.
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed.  相似文献   

13.
We have run several molecular dynamics (MD) simulations on zinc-containing phosphotriesterase (PTE) with two bound substrates, sarin and paraoxon, and with the substrate analog diethyl 4-methylbenzylphosphonate. A standard nonbonded model was employed to treat the zinc ions with the commonly used charge of +2. In all the trajectories, we observed a tightly bound water (TBW) molecule in the active site that was coordinated to the less buried zinc ion. The phosphoryl oxygen of the substrate/inhibitor was found to be coordinated to the same zinc ion so that, considering all ligands, the less buried zinc was hexa-coordinated. The hexa-coordination of this zinc ion was not seen in the deposited X-ray pdb files for PTE. Several additional MD simulations were then performed using different charges (+1, +1.5) on the zinc ions, along with ab initio and density functional theory (DFT) calculations, to evaluate the following possibilities: the crystal diffraction data were not correctly interpreted; the hexa-coordinated zinc ion in PTE is only present in solution and not in the crystal; and the hexa-coordinated zinc ion in PTE is an artifact of the force field used. A charge of +1.5 leads to a coordination number (CN) of 5 on both zinc ions, which is consistent with the results from ab initio and DFT calculations and with the latest high resolution X-ray crystal structure. The commonly used charge of +2 produces a CN of 6 on the less buried zinc. The CN on the more buried zinc ion is 5 when the substrate/inhibitor is present in the simulation, and increases to 6 when the substrate/inhibitor is removed prior to the simulation. The results of both of the MD and quantum mechanical calculations lead to the conclusion that the zinc ions in the PTE active site are both penta-coordinated, and that the MD simulations performed with the charge of +2 overestimate the CN of the zinc ions in the PTE active site. The overall protein structures in the simulations remain unaffected by the change in zinc charge from +2 to +1.5. The results also suggest that the charge +1.5 is the most appropriate for the molecular dynamics simulations on zinc-containing PTE when a nonbonded model is used and no global thermodynamic conclusion is sought. We also show that the standard nonbonded model is not able to properly treat the CN and energy at the same time. A preliminary, promising charge-transfer model is discussed with the use of the zinc charge of +1.5.  相似文献   

14.
As of mid-2017, only one structure of the human immunodeficiency virus (HIV) integrase core domain co-crystallised with an active site inhibitor was reported. In this structure (1QS4), integrase is complexed with a diketo-acid based strand-transfer inhibitor (INSTI). This structure has been a preferred platform for the structure-based design of INSTIs despite concerns relating to structural irregularities arising from crystallographic packing effects. A survey of the current pool of 297 reported integrase catalytic core structures indicated that the anatomy of the active site in the complex structure 1QS4 exhibits subtle variations relative to all other structures examined. Consequently, the 1QS4 structure was employed for docking studies. From the docking of twenty-seven allyltyrosine analogues, a 3-point inhibitor binding motif required for activity was established and successfully utilised in the development of a tripeptide displaying an EC50 value of 10 ± 5 μM in HIV infected human T-cells. Additional docking of “in-house” compound libraries unearthed a methyl ester based nitrile derivative displaying an IC50 value of 0.5 μM in a combined 3′-processing and strand-transfer assay.  相似文献   

15.
Hu  Jianping  Wang  Cunxin 《中国化学》2010,28(1):33-40
The biological function of HIV‐1 integrase (IN) is to integrate viral DNA into the host cell chromosome, and the specific binding of IN with viral DNA is a precondition for IN to function correctly. Beforehand, the binding mode of IN dimer (IN2) with the 27 bp segment of viral DNA before 3′ processing (3′‐P) was obtained via a molecular docking method. Based on the binding mode, the aim of this article was to explore the changes of motive mode and correlative motion for the IN2 and DNA systems after their binding through dynamical cross‐correlation map (DCCM) and principal component analysis (PCA). Finally, solvent effect during the association was analyzed briefly. The results show that there is a significantly increased positive correlation in the interface region between IN2 and viral DNA, and some obvious motive mode changes of the two systems (IN2 and DNA) were also observed after their binding. It was found that water molecules played an important role in the recognition between IN2 and viral DNA through analyzing the water‐mediated hydrogen bonds.  相似文献   

16.
17.
Recently, the importance of proline ring pucker conformations in collagen has been suggested in the context of hydroxylation of prolines. The previous molecular mechanics parameters for hydroxyproline, however, do not reproduce the correct pucker preference. We have developed a new set of parameters that reproduces the correct pucker preference. Our molecular dynamics simulations of proline and hydroxyproline monomers as well as collagen-like peptides, using the new parameters, support the theory that the role of hydroxylation in collagen is to stabilize the triple helix by adjusting to the right pucker conformation (and thus the right phi angle) in the Y position.  相似文献   

18.
The constants of binding of five peptide analogs to the active site of the HIV-1 aspartic-protease are calculated based on a novel sampling scheme that is efficient and does not introduce any approximations in addition to the energy function used to describe the system. The results agree with experiments. The squared correlation coefficient of the calculated vs. the measured values is 0.79. The sampling scheme consists of a series of molecular dynamics integrations with biases. The biases are selected based on an estimate of the probability density function of the system in a way to explore the conformational space and to reduce the statistical error in the calculated binding constants. The molecular dynamics integrations are done with a vacuum potential using a short cutoff scheme. To estimate the probability density of the simulated system, the results of the molecular dynamics integrations are combined using an extension of the weighted histogram analysis method (C. Bartels, Chem. Phys. Letters 331 (2000) 446-454). The probability density of the solvated ligand-protein system is obtained by applying a correction for the use of the short cutoffs in the simulations and by taking into account solvation with an electrostatic term and a hydrophobic term. The electrostatic part of the solvation is determined by finite difference Poisson-Boltzmann calculations; the hydrophobic part of the solvation is set proportional to the solvent accessible surface area. Setting the hydrophobic surface tension parameter equal to 8 mol(-1) K(-1) A(-2), absolute binding constants are in the muM to nM range. This is in agreement with experiments. The standard errors determined from eight repeated binding constant determinations are a factor of 14 to 411. A single determination of a binding constant is done with 499700 steps of molecular dynamics integration and 4500 finite difference Poisson-Boltzmann calculations. The simulations can be analyzed with respect to conformational changes of the active site of the HIV-1 protease or the ligands upon binding and provide information that complements experiments and can be used in the drug development process.  相似文献   

19.
The rapid increase of HIV-1 infection throughout the globe has a high demand for a superior drug with lesser side effects. LEDGF/p75, the human Lens Epithelium-Derived Growth Factor is identified as a promising cellular cofactor with integrase in facilitating the viral replication in an early stage by acting as a tethering factor in the pre-integration to the chromatin. Therefore, the present study was designed to identify a potent inhibitor by applying an E-pharmacophore based virtual screening, molecular docking, and dynamics simulation approaches. Finally, ZINC22077550 and ZINC32124441 were best identified potent molecules with the efficient binding affinity, strong hydrogen bonding, and acceptable pharmacological properties to hamper the interaction between integrase and LEDGF/p75. Further, the DFT and MDS studies were also analyzed, and shown a favorable energetic state and dynamic stability then reference compound. In conclusion, we suggest that these findings could be novel therapeutics in the future and may increase the lifespan of individuals suffering from viral infection.  相似文献   

20.
The use of the MM2QM tool in a combined docking + molecular dynamics (MD) + molecular mechanics (MM) + quantum mechanical (QM) binding affinity prediction study is presented, and the tool itself is discussed. The system of interest is Mycobacterium tuberculosis (MTB) pantothenate synthetase in complexes with three highly similar sulfonamide inhibitors, for which crystal structures are available. Starting from the structure of MTB pantothenate synthetase in the “open” conformation and following the combined docking + MD + MM + QM procedure, we were able to capture the closing of the enzyme binding pocket and to reproduce the position of the ligands with an average root mean square deviation of 1.6 Å. Protein–ligand interaction energies were reproduced with an average error lower than 10%. The discussion on the MD part and a protein flexibility importance is carried out. The presented approach may be useful especially for finding analog inhibitors or improving drug candidates. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号