首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Carrier-free, functionalized drug nanoparticles for targeted drug delivery   总被引:1,自引:0,他引:1  
We demonstrate a new concept of carrier-free functionalized drug nanoparticles for targeted drug delivery. It exhibits significantly enhanced drug efficacy to folate receptor-positive cells with high selectivity and a high drug loading content up to more than 78%.  相似文献   

2.
Diltiazem is an established cardiovascular drug mainly used for the management of hypertension specifically for the angina pectoris. Fluoroquinolones are widely prescribed against the treatment of severe infections. In vitro relations of diltiazem with fluoroquinolones (ciprofloxacin, levofloxacin, norfloxacin, and ofloxacin) were examined using spectrophotometric and separation techniques, i.e., RP-HPLC. Diltiazem’s availabilities were observed to be predisposed highly in the presence of fluoroquinolones. To investigate the mechanism of interaction in a variety of dissolution environments, i.e., simulating body environments with regard to pH on these interactions has been studied. Moreover, complex of diltiazem–fluoroquinolones were prepared and elucidated through IR spectroscopy and confirmed by computational molecular modeling.  相似文献   

3.
4.
5.
6.
In the present study PVP/HPMC and PVP/Chitosan polymer blends were prepared by using the solvent evaporation technique. From DSC studies were revealed that both blends are completed miscible in the entire composition range since only one glass transition temperature was detected. Miscibility can be attributed to the strong interactions evolved between the carbonyl group of PVP, which acts as strong proton acceptor, with hydroxyl and amino-groups of HPMC and Chitosan, which are proton donors. Thus hydrogen bonds are easily formed, as was verified by FTIR, producing miscible blends. However, the extent of interactions depends from polymer composition and mainly from the ratio and the kind of reactive groups. In PVP/HPMC blends a negative variation of Tg is recorded while in PVP/Chitosan the variation has a sigma form. The miscibility of these systems creates matrixes with completely different physical properties in order to use as effective drug carriers. PVP/HPMC blends can be used as pulsatile chronotherapeutics systems adjusting exactly the time of the drug release while PVP/Chitosan blends can be used to control the release profile of a poorly water soluble drug. In these blends HPMC and Chitosan respectively are the control factors for the corresponding applications.  相似文献   

7.
Block copolymers, poly(N-vinylprrolidone)-block-poly(styrene-alter-maleic anhydride) (PVP-b-PSMA) and poly(N-vinylprrolidone)-block-poly(N,N-dimethylaminoethyl methacrylate) (PVP-b-PDMAEMA), were synthesized by reversible addition- fragmentation chain transfer (RAFT) polymerization. In aqueous media, this a pair of oppositely-charged diblock copolymers could self-assemble into stable and narrow distribution polyion complex micelles (PICMs). Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that the micelles to be spherically shaped with mean hydrodynamic diameter around 70 nm. In addition, the PICMs display ability to response to external stimuli. All of theses features are quite feasible for utilizing it as a novel intelligent drug delivery system. In order to assess its application in biomedical area, release profiles of coenzyme A (Co A) from PICMs were studied under both simulated gastric and intestinal pH conditions. The release was much quicker in pH 7.4 buffer than in pH 2.0 solution. Based on these results, these PICMs could be a potential pH-sensitive carrier for colon-specific drug delivery system.  相似文献   

8.
Dendrimers are versatile, derivatisable, well-defined, compartmentalised chemical polymers with sizes and physicochemical properties resembling those of biomolecules e.g. proteins. The present critical review (citing 158 references) briefly describes dendrimer design, nomenclature and divergent/convergent dendrimer synthesis. The characteristic physicochemical features of dendrimers are highlighted, showing the effect of solvent pH and polarity on their spatial structure. The use of dendrimers in biological systems are reviewed, with emphasis on the biocompatibility of dendrimers, such as in vitro and in vivo cytotoxicity, as well as biopermeability, biostability and immunogenicity. The review deals with numerous applications of dendrimers as tools for efficient multivalent presentation of biological ligands in biospecific recognition, inhibition and targeting. Dendrimers may be used as drugs for antibacterial and antiviral treatment and have found use as antitumor agents. The review highlights the use of dendrimers as drug or gene delivery devices in e.g. anticancer therapy, and the design of different host-guest binding motifs directed towards medical applications is described. Other specific examples are the use of dendrimers as 'glycocarriers' for the controlled multimeric presentation of biologically relevant carbohydrate moieties which are useful for targeting modified tissue in malignant diseases for diagnostic and therapeutic purposes. Finally, the use of specific types of dendrimers as scaffolds for presenting vaccine antigens, especially peptides, for use in vaccines is presented.  相似文献   

9.

Critics and Bibliography

Journal on drug analysis  相似文献   

10.
The influence of tautomerism on the precise structure of drugs and thus of their potential to interact with biological systems is discussed from thermodynamic and kinetic aspects. The types of tautomerism encountered in the structure of drugs in current use are surveyed together with the effect of pH, solvent polarity, and temperature.  相似文献   

11.
In this issue of Chemistry & Biology, Wright and colleagues report an elegant method for inhibiting enzymes critical for rendering bacteria drug resistant. By using cationic peptides as inhibitors, the authors have exploited two antibacterial mechanisms, making it doubly difficult for microbial retaliation.  相似文献   

12.
Mechanisms of drug photosensitization   总被引:2,自引:1,他引:1  
  相似文献   

13.
A procedure to obtain a controlled-release microencapsulated anti-inflammatory drug based on a solvent evaporation method is described. The present method makes use of ethylcellulose as the polymer and methylene chloride as solvent. The evaporation of solvent is controlled by means of an air stream. Variations in the preparative procedure and their effects on capsule dimensions and permeabilities were studied. The release behavior of the drug is determined, and two different diffusion constants are also determined: 7.0×10−10 cm2/s and 1.2×10−10 cm2/s, corresponding to low and high release time. Based on these results it is proposed that these microcapsules have a nonhomogeneous polymeric wall, and are more porous in the outer surface. This model might be applicable to the microcapsules obtained by means of the solvent evaporation method.  相似文献   

14.
化学基元组学(chemomics)是与化学信息学、生物信息学、合成化学等学科相关的交叉学科.生物系统从内源性小分子(天然砌块)出发,通过酶催化的化学反应序列制造天然产物.生物系统通过化学反应和天然砌块向目标天然产物"砌入"一组原子,这样的一组原子称为化学基元(chemoyl).化学基元组(chemome)是生物组织中所含有的化学基元的全体.化学基元组学研究各种化学基元的结构、组装与演化的基本规律.在生存压力和繁衍需求的驱动下,生物系统已经进化出有效手段来合成天然产物以应付环境的变化,并产生了丰富多彩的生物和化学多样性.近年来,人们意识到药物创新的瓶颈之一是药物筛选资源的日益枯竭.化学基元组学可以解决这个瓶颈问题,它通过揭示生物系统制备化学多样性的规律,发展仿生合成方法制备类天然化合物库(quasi natural product libraries)以供药物筛选.本文综述了化学基元组学的主要研究内容及其在药物创新各领域中的潜在应用.  相似文献   

15.
Chemomics is an interdisciplinary study using approaches from chemoinformatics,bioinformatics,synthetic chemistry,and other related disciplines.Biological systems make natural products from endogenous small molecules (natural product building blocks) through a sequence of enzyme catalytic reactions.For each reaction,the natural product building blocks may contribute a group of atoms to the target natural product.We describe this group of atoms as a chemoyl.A chemome is the complete set of chemoyls in an organism.Chemomics studies chemomes and the principles of natural product syntheses and evolutions.Driven by survival and reproductive demands,biological systems have developed effective protocols to synthesize natural products in order to respond to environmental changes;this results in biological and chemical diversity.In recent years,it has been realized that one of the bottlenecks in drug discovery is the lack of chemical resources for drug screening.Chemomics may solve this problem by revealing the rules governing the creation of chemical diversity in biological systems,and by developing biomimetic synthesis approaches to make quasi natural product libraries for drug screening.This treatise introduces chemomics and outlines its contents and potential applications in the fields of drug innovation.  相似文献   

16.
化学基元组学(chemomics)是与化学信息学、生物信息学、合成化学等学科相关的交叉学科.生物系统从内源性小分子(天然砌块)出发,通过酶催化的化学反应序列制造天然产物.生物系统通过化学反应和天然砌块向目标天然产物“砌入”一组原子,这样的一组原子称为化学基元(chemoyl).化学基元组(chemome)是生物组织中所含有的化学基元的全体.化学基元组学研究各种化学基元的结构、组装与演化的基本规律.在生存压力和繁衍需求的驱动下,生物系统已经进化出有效手段来合成天然产物以应付环境的变化,并产生了丰富多彩的生物和化学多样性.近年来,人们意识到药物创新的瓶颈之一是药物筛选资源的日益枯竭.化学基元组学可以解决这个瓶颈问题,它通过揭示生物系统制备化学多样性的规律,发展仿生合成方法制备类天然化合物库(quasi natural product libraries)以供药物筛选.本文综述了化学基元组学的主要研究内容及其在药物创新各领域中的潜在应用.  相似文献   

17.
18.
Determination of whether multidrug nanocarriers can deliver and release loaded drugs at a predefined synergistic ratio to target cancer cells is crucial. Although there are many successful applications for delivery of multiple drugs, most current carriers are unable to achieve coordinated loading and release, leading to a drug release ratio that disagrees with the predefined loading ratio.In this work, a simple dual-drug delivery system with a flexible and controllable drug release ratio was constructed to deliver two anticancer drugs, doxorubicin(DOX) and curcumin(CUR). The drug ratio of DOX and CUR can be easily tuned for an enhanced synergistic effect, and the drugs can be released at predesigned ratios due to synchronous drug activation and nanoparticle collapse. Drug release at predefined ratios for synergistic anticancer therapy was demonstrated via in vitro and in vivo experiments. Therefore, the dual drug delivery system developed here provides a simple and efficient strategy for combination chemotherapy.  相似文献   

19.
The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.  相似文献   

20.
The research of radiation effects on drugs over the past 60 years has mainly dealt with radiation sterilization of individual active pharmaceutical ingredients (APIs) in the form of pure substances or injectable solutions. However, the emergence of novel systems for drug administration and targeting via controlled drug delivery (CDD) and/or controlled drug release (CDR) has extended the use of irradiation with respect to pharmaceuticals: the capacity of radiation to act as an initiator of crosslinking has been used in the manufacturing and modification of a number of polymeric carriers with an added advantage of reducing the microbial load of products at the same time. The application of irradiation to these novel systems requires the understanding of radiation action not only on APIs alone but also on drug carriers and on the functioning of the integral CDD/CDR systems. In this paper, the significance of CDD/CDR systems is considered with a special emphasis on the role of irradiation for sterilization and crosslinking in the developments over the past 15 years. Radiation sterilization, crosslinking and degradation of the principal forms of drug carrier systems and the effects of irradiation on the release kinetics of APIs are discussed in light of radiation chemical principles. Regulatory aspects pertaining to radiation sterilization of drugs are also considered. Relevant results are summarized in tabular form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号