首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The H(+)+D(2) and D(+)+H(2) reactive collisions are studied using a recently proposed adiabatic potential energy surface of spectroscopic accuracy. The dynamics is studied using an exact wave packet method on the adiabatic surface at energies below the curve crossing occurring at approximately 1.5 eV above the threshold. It is found that the reaction is very well described by a statistical quantum method for a zero total angular momentum (J) as compared with the exact ones, while for higher J some discrepancies are found. For J >0 different centrifugal sudden approximations are proposed and compared with the exact and statistical quantum treatments. The usual centrifugal sudden approach fails by considering too high reaction barriers and too low reaction probabilities. A new statistically modified centrifugal sudden approach is considered which corrects these two failures to a rather good extent. It is also found that an adiabatic approximation for the helicities provides results in very good agreement with the statistical method, placing the reaction barrier properly. However, both statistical and adiabatic centrifugal treatments overestimate the reaction probabilities. The reaction cross sections thus obtained with the new approaches are in rather good agreement with the exact results. In spite of these deficiencies, the quantum statistical method is well adapted for describing the insertion dynamics, and it is then used to evaluate the differential cross sections.  相似文献   

2.
The calculation of single-particle time correlation functions using the Bose-Einstein centroid dynamics formalism is discussed. A new definition of the quasidensity operator is used to calculate the centroid force on a given particle for an anharmonic system. The force includes correlation effects due to quantum statistics and is used for the calculation of the classical-like dynamics of phase-space centroid variables within the centroid molecular dynamics approximation. Time correlation functions are then obtained for single-particle quantities. These correspond to the double-Kubo transform of exact quantum-mechanical correlation functions. The centroid dynamics results are compared to those of exact basis-set calculations and a good agreement is found. The level of accuracy is in fact the same as what was observed earlier for the calculation of center-of-mass correlation functions for Fermi-Dirac and Bose-Einstein statistics, and for any correlation function for Boltzmann statistics. These results show that it is now possible to use Bose-Einstein centroid molecular dynamics to calculate single-particle correlation functions for systems where quantum exchange effects are present.  相似文献   

3.
The adiabatic approximation is applied to determine the quantum states of coupled oscillators described by a generalized Hénon-Heiles hamiltonian. Comparison with exact quantum and other results show that numerically calculated adiabatic energy levels are accurate even for excited states.  相似文献   

4.
Most applications of time-dependent density-functional theory (TDDFT) use the adiabatic local-density approximation (ALDA) for the dynamical exchange-correlation potential V(xc)(r,t). An exact (i.e., nonadiabatic) extension of the ground-state LDA into the dynamical regime leads to a V(xc)(r,t) with a memory, which causes the electron dynamics to become dissipative. To illustrate and explain this nonadiabatic behavior, this paper studies the dynamics of two interacting electrons on a two-dimensional quantum strip of finite size, comparing TDDFT within and beyond the ALDA with numerical solutions of the two-electron time-dependent Schrodinger equation. It is shown explicitly how dissipation arises through multiple particle-hole excitations, and how the nonadiabatic extension of the ALDA fails for finite systems but becomes correct in the thermodynamic limit.  相似文献   

5.
The non-relativistic quantum dynamics of nuclei and electrons is solved within the framework of quantum hydrodynamics using the adiabatic representation of the electronic states. An on-the-fly trajectory-based nonadiabatic molecular dynamics algorithm is derived, which is also able to capture nuclear quantum effects that are missing in the traditional trajectory surface hopping approach based on the independent trajectory approximation. The use of correlated trajectories produces quantum dynamics, which is in principle exact and computationally very efficient. The method is first tested on a series of model potentials and then applied to study the molecular collision of H with H(2) using on-the-fly TDDFT potential energy surfaces and nonadiabatic coupling vectors.  相似文献   

6.
We extend the generating function technique for calculation of single molecule photon emission statistics (Zheng, Y.; Brown, F. L. H. Phys. Rev. Lett. 2003, 90, 238305) to systems governed by multi-level quantum dynamics. This opens up the possibility to study phenomena that are outside the realm of purely stochastic and mixed quantum-stochastic models. In particular, the present methodology allows for calculation of photon statistics that are spectrally resolved and subject to quantum coherence. Several model calculations illustrate the generality of the technique and highlight quantitative and qualitative differences between quantum mechanical models and related stochastic approximations when they arise. Calculations suggest that studying photon statistics as a function of photon frequency has the potential to reveal more about system dynamics than the usual broadband detection schemes.  相似文献   

7.
The H+ +D2(v=0,j=0)-->HD+D + reaction has been theoretically investigated by means of a time independent exact quantum mechanical approach, a quantum wave packet calculation within an adiabatic centrifugal sudden approximation, a statistical quantum model, and a quasiclassical trajectory calculation. Besides reaction probabilities as a function of collision energy at different values of the total angular momentum, J, special emphasis has been made at two specific collision energies, 0.1 and 0.524 eV. The occurrence of distinctive dynamical behavior at these two energies is analyzed in some detail. An extensive comparison with previous experimental measurements on the Rydberg H atom with D2 molecules has been carried out at the higher collision energy. In particular, the present theoretical results have been employed to perform simulations of the experimental kinetic energy spectra.  相似文献   

8.
Real-time first principle simulations are presented of the D(2) Coulomb explosion dynamics detonated by exposure to very intense few-cycle laser pulse. Three approximate functionals within the time-dependent density functional theory (TDDFT) functionals are examined for describing the electron dynamics, including time-dependent Hartree-Fock theory. Nuclei are treated classically with quantum corrections. The calculated results are sensitive to the underlying electronic structure theory, showing too narrow kinetic energy distribution peaked at too high kinetic energy when compared with recent experimental results (Phys. Rev. Lett. 2003, 91, 093002). Experiment also shows a low energy peak which is not seen in the present calculation. We conclude that while Ehrenfest-adiabatic-TDDFT can qualitatively account for the dynamics, it requires further development, probably beyond the adiabatic approximation, to be quantitative.  相似文献   

9.
Within the Born-Oppenheimer (BO) approximation, nuclear motions of a molecule are often envisioned to occur on an adiabatic potential energy surface (PES). However, this single PES picture should be reconsidered if a conical intersection (CI) is present, although the energy is well below the CI. The presence of the CI results in two additional terms in the nuclear Hamiltonian in the adiabatic presentation, i.e., the diagonal BO correction (DBOC) and the geometric phase (GP), which are divergent at the CI. At the same time, there are cusps in the adiabatic PESs. Thus usually it is regarded that there is numerical difficulty in a quantum dynamics calculation for treating CI in the adiabatic representation. A popular numerical method in nuclear quantum dynamics calculations is the Sinc discrete variable representation (DVR) method. We examine the numerical accuracy of the Sinc DVR method for solving the Schr?dinger equation of a two dimensional model of two electronic states with a CI in both the adiabatic and diabatic representation. The results suggest that the Sinc DVR method is capable of giving reliable results in the adiabatic representation with usual density of the grid points, without special treatment of the divergence of the DBOC and the GP. The numerical uncertainty is not worse than that after the introduction of an arbitrary vector potential for accounting the GP, whose accurate form usually is not easy to obtain.  相似文献   

10.
The generator coordinate (GC) method is a variational approach to the quantum many-body problem in which interacting many-body wave functions are constructed as superpositions of (generally nonorthogonal) eigenstates of auxiliary Hamiltonians containing a deformation parameter. This paper presents a time-dependent extension of the GC method as a new approach to improve existing approximations of the exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT). The time-dependent GC method is shown to be a conceptually and computationally simple tool to build memory effects into any existing adiabatic XC potential. As an illustration, the method is applied to driven parametric oscillations of two interacting electrons in a harmonic potential (Hooke's atom). It is demonstrated that a proper choice of time-dependent generator coordinates in conjunction with the adiabatic local-density approximation reproduces the exact linear and nonlinear two-electron dynamics quite accurately, including features associated with double excitations that cannot be captured by TDDFT in the adiabatic approximation.  相似文献   

11.
12.
We generalize the linearized path integral approach to evaluate quantum time correlation functions for systems best described by a set of nuclear and electronic degrees of freedom, restricting ourselves to the adiabatic approximation. If the operators in the correlation function are nondiagonal in the electronic states, then this adiabatic linearized path integral approximation for the thermal averaged quantum dynamics presents interesting and distinctive features, which we derive and explore in this paper. The capability of these approximations to accurately reproduce the behavior of physical systems is demonstrated by calculating the diffusion constant for an excess electron in a metal-molten salt solution.  相似文献   

13.
14.
Femtosecond laser pulse control of exciton dynamics in a biological chromophore complex is studied theoretically. The computations use the optimal control theory specified to open quantum systems and formulated in the framework of the rotating wave approximation. Based on the laser pulse induced formation of an excitonic wave packet the possibility to localize excitation energy at a certain chromophore within a photosynthetic antenna system (FMO complex of green bacteria) is investigated. Details of exciton dynamics driven by a polarization shaped pulse are discussed.  相似文献   

15.
We compute the quantum rate constant based on two extended stationary phase approximations to the imaginary-time formulation of the quantum rate theory. The optimized stationary phase approximation to the imaginary-time flux-flux correlation function employs the optimized quadratic reference system to overcome the inaccuracy of the quadratic expansion in the standard stationary phase approximation, and yields favorable agreements with instanton results for both adiabatic and nonadiabatic processes in dissipative and nondissipative systems. The integrated stationary phase approximation to the two-dimensional barrier free energy is particularly useful for adiabatic processes and demonstrates consistent results with the imaginary-time flux-flux correlation function approach. Our stationary phase methods do not require calculation of tunneling paths or stability matrices, and work equally well in the high-temperature and the low-temperature regimes. The numerical results suggest their general applicability for calibration of imaginary-time methods and for the calculation of quantum rate constants in systems with a large number of degrees of freedom.  相似文献   

16.
A justification is given for the use of non-spreading or frozen gaussian packets in dynamics calculations. In this work an initial wavefunction or quantum density operator is expanded in a complete set of grussian wavepackets. It is demonstrated that the time evolution of this wavepacket expansion for the quantum wavefunction or density is correctly given within the approximations employed by the classical propagation of the avarage position and momentum of each gaussian packet, holding the shape of these individual gaussians fixed. The semiclassical approximation is employed for the quantum propagator and the stationary phase approximation for certain integrals is utilized in this derivation. This analysis demonstrates that the divergence of the classical trajectories associated with the individual gaussian packets accounts for the changes in shape of the quantum wavefunction or density, as has been suggested on intuitive grounds by Heller. The method should be exact for quadratic potentials and this is verified by explicitly applying it for the harmonic oscillator example.  相似文献   

17.
Reversibly switchable fluorescent proteins (RSFPs) are essential for high‐resolution microscopy of biological samples, but the reason why these proteins are photochromic is still poorly understood. To address this problem, we performed molecular dynamics simulations of the fast switching Met159Thr mutant of the RSFP Dronpa. Our simulations revealed a ground state structural heterogeneity in the chromophore pocket that consists of three populations with one, two, or three hydrogen bonds to the phenolate moiety of the chromophore. By means of non‐adiabatic quantum mechanics/molecular dynamics simulations, we demonstrated that the subpopulation with a single hydrogen bond is responsible for off‐switching through photo‐isomerization of the chromophore, whereas two or more hydrogen bonds inhibit the isomerization and promote fluorescence instead. While rational design of new RSFPs has so far focused on structure alone, our results suggest that structural heterogeneity must be considered as well.  相似文献   

18.
The electronic dephasing dynamics of a solvated chromophore is formulated in terms of a non-Markovian master equation. Within this formulation, one describes the effect of the nuclear degrees of freedom on the electronic degrees of freedom in terms of a memory kernel function, which is explicitly dependent on the initial solvent configuration. In the case of homogeneous dynamics, this memory kernel becomes independent of the initial configuration. The Markovity of the dephasing process is also the most conveniently explored by comparing the results obtained via the non-Markovian master equation to these obtained via its Markovian counterpart. The homogeneous memory kernel is calculated for a two-state chromophore in liquid solution, and used to explore the sensitivity of photon echo signals to the heterogeneity and non-Markovity of the underlying solvation dynamics.  相似文献   

19.
The exact asymptotic solution of the problem for scattering of slow electrons by positively charged ions M+ is obtained using the multichannel quantum defect (MQD) method and results of the adiabatic approximation.  相似文献   

20.
《Chemical physics letters》1987,137(4):345-352
A method for providing systematic diabatic corrections to the Born-Oppenheimer approximation is presented. We begin with an adiabatic expansion of the exact vibronic wavefunctions and, via the molecular Hamiltonian, develop expressions for the diabatic terms in the Schrödinger equation. We then derive recursion relations which allow one to introduce the diabatic interactions to any desired degree of approximation. As an example, the first approximation (beyond the Born-Oppenheimer approximation) is discussed explicitly. In passing, we assess some of the common misconceptions associated with the Born-Oppenheimer approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号