首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the results of Molecular Dynamics (MD) simulations of the solvent reorganization energy of electron transfer (ET) reactions in low-temperature solvents. Simulations are carried out for a model charge-transfer optical dye (p-nitroaniline) in SPC/E water in a range of temperatures down to the point of solvent ideal glass transition. We show a significant departure of the solvent reorganization energy, measured on a given time window, from its thermodynamic limit obtained by averaging over long simulation trajectories. Our results thus indicate that optical solvatochromism and activation parameters of ET reactions measured in viscous solvents will be significantly affected by the dynamical arrest of nuclear solvation when the experimental time scale becomes comparable to the characteristic relaxation time of the solvent.  相似文献   

2.
A phenomenological model of electron transfer reactions in solvents undergoing glass transition is discussed. The reaction constant cuts off slow polarization modes from the spectrum of nuclear thermal motions active on the observation time scale. The arrest of nuclear solvation in turn affects the reaction activation barrier making it dependent on the rate. The resultant rate constant is sought from a self-consistent equation. The model describes well the sharp change in the solvent Stokes shift of optical lines in the glass-transition region. It is also applied to describe the temperature dependence of primary charge separation and reduction of primary pair in photosynthetic reaction centers. The model shows that a weak dependence of the primary charge separation rate on temperature can be explained by dynamical arrest of nuclear solvation on the picosecond time scale of electron transfer. For reduction of primary pair by cytochrome, the model yields a sharp turnover of the reaction kinetics at the transition temperature when nuclear solvation freezes in.  相似文献   

3.
4.
5.
The free energy change of an electron transfer reaction in a polar solvent is rigorously analyzed within the framework of the dielectric continuum model. An appropriate expression for the electrostatic energy between the two product ions separated by R is derived. The present result does not support a recent claim by Suppan that, if R is close to the contact distance, the electrostatic energy should be much larger in magnitude than estimated from the usual expression −e2sR.  相似文献   

6.
The polymerization of methacrylates of methyl, ethyl, butyl, hexyl, octyl, dodecyl, and octadecyl alcohols was studied with 2,2′-azobisisobutyronitrile in the smectic, nematic, cholesteric, and isotropic liquid phases at 50–75°C. N-(4-Methoxyphenylmethylene)phenylamine, N-(4-ethoxyphenyl-methylene)-4-butylphenylamine, cholesteryl octadecanoate, and benzene were used as the solvents. The viscosities of the polymers were enhanced in the mesomorphic solvents. The polymer was converted to the corresponding poly(methyl methacrylate) through hydrolysis and esterification. Tacticities of the resultant poly(methyl methacrylates) were determined by nuclear magnetic resonance spectroscopy. The isotacticities of the polymers obtained in the smectic and the nematic phases were basically the same and appeared to be larger than those of the polymers in the cholesteric and isotropic liquid states. The polymerization of the methacrylates of butyl and longer-chain alcohols deviated from Bernoullian statistics and gave polymers more isotactic than those of methyl and ethyl methacrylates.  相似文献   

7.
We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.  相似文献   

8.
We report the results of molecular dynamics simulations of the solvent reorganization energy of intramolecular electron transfer in a charge-transfer molecule dissolved in water and acetonitrile at varying temperatures. The simulations confirm the prediction of microscopic solvation theories of a positive reorganization entropy in polar solvents. The results of simulations are analyzed in terms of the splitting of the reorganization entropy into the contributions from the solute-solvent interaction and from the alteration of the solvent structure induced by the solute. These two contributions mutually cancel each other, resulting in the reorganization entropy amounting to only a fraction of each component.  相似文献   

9.
Thin films of organic molecular crystals have drawn widespread attention for their scientifically interesting and potentially useful electronic, photonic, and chemical properties. However, because their properties are extremely sensitive to structural imperfections, domain size, and crystallographic orientation, preparation of high-quality thin films with controlled microstructural organization under technologically favorable conditions has long been a bottleneck toward practical applications and better controlled fundamental studies. Here a technique is introduced combining atmospheric pressure vapor-phase deposition with solution-phase growth in a thin layer of thermotropic liquid crystal solvent. The method produces relatively large crystals, enables control over crystallographic orientation and growth habit, and involves mild processing conditions compatible with a variety of substrates and organic materials. Results are presented for the organic semiconductor tetracene, along with a discussion of film growth and alignment mechanisms.  相似文献   

10.
Interfacial electron transfer (IET) between a chromophore and a semiconductor nanoparticle is one of the key processes in a dye-sensitized solar cell. Theoretical simulations of the electron transfer in polyoxotitanate nanoclusters Ti(17)O(24)(OPr(i))(20) (Ti(17)) functionalized with four p-nitrophenyl acetylacetone (NPA-H) adsorbates, of which the atomic structure has been fully established by X-ray diffraction measurements, are presented. Complementary experimental information showing IET has been obtained by EPR spectroscopy. Evolution of the time-dependent photoexcited electron during the initial 5 fs after instantaneous excitation to the NPA LUMO + 1 has been evaluated. Evidence for delocalization of the excitation over multiple chromophores after excitation to the NPA LUMO + 2 state on a 15 fs time scale is also obtained. While chromophores are generally considered electronically isolated with respect to neighboring sensitizers, our calculations show that this is not necessarily the case. The present work is the most comprehensive study to date of a sensitized semiconductor nanoparticle in which the structure of the surface and the mode of molecular adsorption are precisely defined.  相似文献   

11.
Binary mixtures of plate-like molecules of different size and shape with various rod-like mesomorphic solvents are studied. In several cases an “unusual” increase of the isotropic to nematic transition temperature is observed and, when the solubility permits it, a maximum in the NI equilibrium curve (of temperature-concentration diagrams) appears. We try to explain this effect by comparison with previous works and a short discussion on the possible influence of structural parameters of the compounds in different mixtures is also given.  相似文献   

12.
A new class of fluorescence sensor for detection of water in organic solvents based on photo-induced electron transfer (PET) of anthracene coupled with an amino acid has been designed and developed.  相似文献   

13.
The authors extend their previous work published in Leontyev and TachiyaJ. Chem. Phys. 123, 224502 (2005) and study not only forward but also reverse electron transfer between pyrene and dimethylaniline in a nonpolar solvent, n-hexane. The distribution function methodology and molecular dynamics technique adopted in their previous work are used. Two algorithms (I and II) are formulated for obtaining the reorganization energy and the solvation free energy difference in the linear response approximation. The two algorithms are combined with different cutoff schemes and tested for polarizable and nonpolarizable solvent models. Agreement between the results obtained by the two algorithms was achieved only for simulations employing the particle mesh Ewald treatment. It is concluded that algorithm I provides a reliable scheme for evaluation of the reorganization energy and the solvation free energy difference. Moreover, a new algorithm referred to as the G-function algorithm is formulated which does not assume the linear response approximation, and is tested on evaluation of the solvation free energy difference. Agreement between the results from the G-function algorithm and those from algorithms I and II is fairly good, although it depends on the degree of statistical consistency of the simulations. In the case of nonpolar solvents the G-function method has practical importance because, unlike the conventional thermodynamic integration approach, it requires equilibrium molecular configuration ensembles only for the initial and final states of the system.  相似文献   

14.
The photo-induced electron transfer between Coumarin dyes and aromatic amines has been investigated using steady state and time-resolved fluorescence quenching studies. We have observed a Marcus type inversion in the electron transfer rate in correlation of quenching constant to the free energy change occurred during reaction. To justify the "inverted region" obtained in the correlation of quenching constant versus free energy curve, we have performed anisotropy measurement and estimated the several diffusional parameters. The translational diffusion coefficients exhibit a similar picture like electron transfer rate constant when it is plotted against free energy. Thus we argued that the diffusion has played an important role in the electron transfer kinetics.  相似文献   

15.
ClPbis11BB and Pbis11BB, two banana-shaped mesogens differing by a chlorine substituent on the central phenyl ring, show a nematic and a B2 phase, respectively. To obtain information on the structural features responsible for their different mesomorphic behavior, a study of the preferred conformations of these mesogens has been performed by NMR spectroscopy in two nematic media (Phase IV and ZLI1167), which should mimic the environment of the molecules in their own mesophases, avoiding problems of sample alignment by a magnetic field. To this aim, 2H NMR experiments have been performed on selectively deuterated isotopomers of ClPbis11BB and Pbis11BB and of two parent molecules, ClPbisB and PbisB, assumed as models in previous theoretical and experimental conformational studies. We found that only a limited number of conformations is compatible with experimental data, often very different from those inferred from theoretical calculations in vacuo, indicating a strong influence of the liquid crystalline environment on molecular conformation. No significant differences between chlorinated and non-chlorinated molecules were found, this suggesting that chlorine does not change the molecular conformational equilibrium, as previously proposed.  相似文献   

16.
We present a molecular-dynamics study of the solvent reorganization energy of electron transfer in supercooled water. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect as discussed by the mode coupling theory. Both the heat capacity and dielectric susceptibility of the pure water show sharp drops at about the same temperature. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to Debye relaxation of the solvent dipolar polarization.  相似文献   

17.
Rigid-rod aromatic LC polyester with long alkyl side chains and two thermotropic LC polyesters (PET40/OBA60 and PB-10) were studied by fluorescence spectroscopy to investigate their charge transfer interactions corresponding to LC configuration and changes during phase transition.  相似文献   

18.
19.
The kinetics of the electron transfer reaction of methylene green and titanium trichloride was investigated in different solvents by spectrophotometry at different temperatures. The the reaction rate was determined by monitoring the absorbance as a function of time at λmax 655 nm. The reaction is pseudo-first order, dependent only on the concentration of titanium trichloride at a fixed concentration of methylene green.  相似文献   

20.
A polarizable solute model, based on the empirical valence bond approach, is developed and applied to electron transfer (ET) reactions in polarizable and flexible water solvents. The polarization effect is investigated in comparison with a nonpolarizable solute and solvent model. With free energy curves constructed by a molecular dynamics simulation, the activation energy barrier and the reorganization energy related to ET processes are investigated. The present simulation results show that the activation energy barrier becomes larger in the polarizable model than in the nonpolarizable model and that this makes the ET rate slower than that with the nonpolarizable model. It is shown that the effect of the electronic energy difference of solute molecule on free energy profiles is remarkable and that, corresponding to this effect, the reorganization energy is significantly modified. These results indicate that the process of solvent polarization by the polarized solute to enhance the solute-solvent interaction is a key factor and that treating the polarization of both solute and solvent at the same time is essential. Also, the polarization effect on the diffusive motion of the solute molecule in the polarization solvent is studied. The polarized solute molecule shows slower diffusive motion compared with that in the nonpolarizable model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号