首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study is to artificially produce degradation intermediates of thiabendazole, which could be reasonably similar to those really present in the environment. The formation of by-products from thiabendazole transformation has been evaluated by adopting irradiated titanium dioxide as a photocatalyst. Several species more hydrophilic than the thiabendazole have been identified and characterized by HPLC-multiple MS. A pattern of reactions accounting for the observed intermediates is proposed. Two different parallel pathways are operating (and through these pathways the transformation of the molecule proceeds) leading to several intermediate compounds. The main steps involved are: (1) the hydroxylation of the molecule on the aromatic ring with the formation of a species having [M+H]+ 218; a further oxidation leads to the ring-opening and to the formation of aldehydic and alcoholic structures ([M+H]+ 270, 268 and 152); and (2) the cleavage of a C-C bond and the formation of a species having [M+H]+ 119.  相似文献   

2.
The photocatalytic transformation of dexamethasone and the formation of its intermediate compounds have been studied using titanium dioxide as a photocatalyst. The degradation of dexamethasone occurs easily through the formation of several hydroxy derivatives whose characterization has been made by HPLC/MS/MS. Even if both oxidative and reductive processes can be operating, only oxidative products have been identified in air saturated aqueous suspensions. A pattern of reaction pathways accounting for the observed intermediates is proposed. The obtained experimental evidence may be rationalized postulating the existence of a double initial mechanism. A single oxidation step resulting from the attack by one ·OH radical leading to the formation of five hydroxy-derivatives and a concomitant attack involving two ·OH radicals leading to the hydroxylation of the quinoid moiety of the molecule.  相似文献   

3.
The photocatalytic transformation of dexamethasone and the formation of its intermediate compounds have been studied using titanium dioxide as a photocatalyst. The degradation of dexamethasone occurs easily through the formation of several hydroxy derivatives whose characterization has been made by HPLC/MS/MS. Even if both oxidative and reductive processes can be operating, only oxidative products have been identified in air saturated aqueous suspensions. A pattern of reaction pathways accounting for the observed intermediates is proposed. The obtained experimental evidence may be rationalized postulating the existence of a double initial mechanism. A single oxidation step resulting from the attack by one ·OH radical leading to the formation of five hydroxy-derivatives and a concomitant attack involving two ·OH radicals leading to the hydroxylation of the quinoid moiety of the molecule.  相似文献   

4.
Ion trap mass spectrometry has been used to structurally characterize and differentiate positional and stereo isomers of arylglycosides having potential antioxidant properties. The use of the self-ionization (SI) technique has allowed to evidence a strong reactivity of fragment ions produced from dissociations of the molecular ion towards the molecules introduced into the trap. Specific structural effects due to positional isomers and anomers have been also envisaged through the occurrence of bimolecular processes inside the ion trap analyzer. Under self-ionization conditions, even-electron ions are produced. The charge is retained on the sugar moiety, in agreement with its proton affinity higher than that of the substituted phenol moiety. Most of the fragmentation pathways involve elimination of acetic acid that protects the hydroxylic groups of the glycoside. SI also produces adduct ions, likely as covalent species, having higher m/z values than the molecular ion. The reaction site is mainly the double bond present in the pyranosidic ring. Even if some fragment ions have lost the initial stereochemistry, their formation can be related to the structure of the parent neutrals introduced into the cell. Collision-induced dissociation (CID) experiments, carried out on ions formed by ion-molecule reactions, have allowed to obtain further information on gas phase ion structures. The study of mass-selected ion-molecule reactions and their kinetics have evidenced a spectacularly different reactivity of the ion at m/z 111 towards the two anomers 2alpha and 2beta, with the latter showing a much more pronounced reactivity. The approach developed in this work revealed to be an useful tool in structural characterization, as well as in stereo and regiochemical differentiation of arylglycosides.  相似文献   

5.
Following incubation of rutaecarpine, a new cyclooxygenase-2 inhibitor, with rat liver microsomes, the structures of the metabolites were characterized by liquid chromatography with tandem mass spectrometry. Nine metabolites corresponding to mono- or dihydroxylated rutaecarpine were formed. Characteristic product ions for the identification of rutaecarpine metabolites were observed at m/z 136, 158 and 286. The loss of water led to the fragment ion at m/z 286, indicating the hydroxylation of the aliphatic ring. The fragment ion at m/z 136 indicated the hydroxylated form of the phenyl group of the quinazolinone moiety, while that at m/z 158 indicated the hydroxylated form of the aromatic ring of the indole moiety.  相似文献   

6.
In this paper, a comprehensive study of the fate of an antibiotic, lincomycin, in the aquatic environment is presented. High‐resolution mass spectrometry was employed to assess the evolution of the process over time. Formation of intermediate compounds was followed by high performance liquid chromatography‐high resolution mass spectrometry (LC‐HRMS); accurate mass‐to‐charge ratios of parent ions were reported with inaccuracy below 1 mmu, which guarantee the correct assignment of their molecular formula in all cases, while their MS2 and MS3 spectra showed several structural‐diagnostic ions that allowed to characterize the different transformation products (TPs) and to discriminate the isobaric species. The simulation of phototransformation occurring in the aquatic environment and the identification of biotic and abiotic TPs of the pharmaceutical compound were carried out in different experimental conditions: dark experiments, homogeneous photolysis and heterogeneous photocatalysis using titanium dioxide, in order to recreate conditions similar to those found in the environment. Twenty‐one main species were identified afterwards lincomycin transformation. Several isomeric species were formed and characterized by analyzing MS and MSn spectra and by comparison with parent molecule fragmentation pathways. The major transformation process for lincomycin is hydroxylation either at N‐alkyl side chain or at the pyrrolidine moiety. In addition, oxidation/reduction, demethylation or cleavage of pyranose ring occurs. Based on this information and additional assessment of profiles over time of formation/disappearance of each species, it was possible to recognize the transformation pathways followed by the drug. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We have observed unusual mass spectra of chloramphenicol (CAP) in solutions of methanol or acetonitrile showing intense ions at m/z 297, m/z 311, m/z 325 and m/z 339. The observed ions were different from those which are traditionally observed in the full scan ESI mass spectra of CAP with ions of m/z 321, m/z 323 and m/z 325. We have evidence to show that this process starts with offline methylation of CAP in solutions of methanol or acetonitrile to give m/z 339. Investigations using nuclear magnetic resonance (NMR) spectroscopy showed that there is a methylene group somewhere within the CAP molecule but not attached to any of the carbon atoms when the CAP is dissolved in methanol or acetonitrile before infusion into the mass spectrometer. The possible locations of attachment were speculated to be the electronegative atoms apart from the chlorine atoms due to valence considerations. The methylene group is attached to the nitrogen atom and forms a bond as observed in the MS/MS spectra of m/z 297, m/z 311, m/z 325 and m/z 339 which give m/z 183 as the base peak in all cases. Further experiments showed that there is cleavage of the methylated CAP molecule followed by cluster ion formation involving addition of methylene groups to the CAP fragment with m/z 183 to produce ions of m/z including m/z 297, m/z 311, m/z 325 and m/z 339. This process occurs in the mass spectrometer in the region housing the tube lens and is triggered when the ions are accelerated through this region by application of a negative tube lens offset voltage. This region affords collision of the charged droplets with a collision gas in this case nitrogen to strip the droplets of their solvent molecules. Experiments to follow the intensities of m/z 183, m/z 311, m/z 321, m/z 323, m/z 325 and m/z 339 as the tube lens offset voltage was varied were done in which the intensities of m/z 311, m/z 325 and m/z 339 were observed to be at their peak when the tube lens offset voltage was set at -40 V. When the tube lens offset voltage is swung to +40 V, thus decelerating the ions through the capillary skimmer region via the tube lens, the traditionally observed spectra with m/z 321, m/z 323 and m/z 325 were observed.  相似文献   

8.
The gas-phase ion-molecule reactions of 1,1,3,3-tetrafluorodimethyl ether and water have been examined using Fourier transform ion cyclotron resonance mass spectrometry, infrared multiphoton dissociation (IRMPD) spectroscopy, and ab initio molecular orbital calculations. This reaction sequence leads to the efficient bimolecular production of the proton-bound dimer of water (H5O2+). Evidence for the dominant mechanistic pathway involving the reaction of CF2H-O=CHF+, an ion of m/z 99, with water is presented. The primary channel occurs via nucleophilic attack of water on the ion of m/z 99 (CF2H-O=CHF+), to lose formyl fluoride and yield-protonated difluoromethanol (m/z 69). Association of a second water molecule with protonated difluoromethanol generates a reactive intermediate that decomposes via a 1,4-elimination to release hydrogen fluoride and yield the proton-bound dimer of water and formyl fluoride (m/z 67). Last, the elimination of formyl fluoride occurs by the association of a third water molecule to produce H5O2+ (m/z 37). The most probable isomeric forms of the ions with m/z 99 and 69 were found using IRMPD spectroscopy and electronic structure theory calculations. Thermochemical information for reactant, transition state, and product species was obtained using MP2(full)/6-311+G**//6-31G* level of theory.  相似文献   

9.
Two C(9)H(7) isomers, 1-phenylpropargyl and 3-phenylpropargyl, have been studied by IR/UV double resonance spectroscopy in a free jet. The species are possible intermediates in the formation of soot and polycyclic aromatic hydrocarbons (PAH). The radicals are generated by flash pyrolysis from the corresponding bromides and ionized at 255-297 nm in a one-color, two-photon process. Mid-infrared radiation between 500 and 1800 cm(-1) is provided by a free electron laser (FEL). It is shown that the two radicals can be distinguished by their infrared spectra. In addition, we studied the dimerization products originating from the phenylpropargyl self-reaction. We utilize the fact that the pyrolysis tube can be considered to be a flow reactor permitting us to investigate the chemistry in such a thermal reactor. Dimerization of phenylpropargyl produces predominately species with m/z = 228 and 230. A surprisingly high selectivity has been found: The species with m/z = 230 is identified to be para-terphenyl, whereas m/z = 228 can be assigned to 1-phenylethynyl-naphthalene. The results allow to derive a mechanism for the dimerization of phenylpropargyl and suggest hitherto unexplored pathways to the formation of soot and PAH.  相似文献   

10.
The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.  相似文献   

11.
Electrospray ionization for analysis of platelet-activating factor.   总被引:1,自引:0,他引:1  
Platelet-activating factor (PAF) was analyzed by electrospray-ionization mass spectrometry (ESI-MS) using a single quadrupole mass spectrometer. The positive-ion spectrum was dominated by an ion corresponding to a sodiated molecule when a low potential difference between the capillary exit (nozzle) and the skimmer was employed, but when the capillary exit voltage was increased, fragmentation of PAF was observed. Initial fragmentation involved the loss of the elements of trimethylamine from the sodiated molecule to yield [M+Na-59]+. An intense ion at m/z 147, generated by the loss of trimethylamine from the sodiated phosphocholine portion of the molecule was also detected, along with a lower intensity ion at m/z 184 which is representative of a protonated phosphocholine moiety. With negative-ion detection the major molecular species was [M+Cl]-. Interpretation of the mass spectral fragments was verified by ESI tandem mass spectrometry on a triple-quadrupole tandem mass spectrometer.  相似文献   

12.
Saccharides (mono through hexasaccharides) that mimic the terminal epitopes of O-antigens of Vibrio cholerae O:1, serotypes Ogawa and Inaba, were studied by electrospray ion trap (ESI IT) mass spectrometry (MS) in the negative mode. Anionized adducts are the characteristic ions formed by the capture of H(3)O(2)(-) under the condition of ESI MS analysis. The reactive species are produced by reaction of hydroxyl anions with the molecule of water. Thus the [M + H(3)O(2)](-) have the highest m/z value in the ESI IT negative mass spectra. After dissociation of adducts by loss of 2H(2)O the [M-H](-) ions are produced. The fragmentation pathways were confirmed by multistage measurements (MS(n)). The predominant pathway of fragmentation of the mono- and oligomers is the elimination of a molecule of alpha- hydroxy--gammabutyrolactone from the 4-(3-deoxy-L-glycero-tetronamido) group. The other characteristic pathway occurs by shortening the length of oligosaccharides. In this way, conversion of the Ogawa to Inaba fragments takes place under the conditions of measurement. Negative ESI MS/MS provided sufficient information about molecular mass, the number of saccharide residues, basic structure of saccharides, about the tetronamide part of the compounds investigated and allowed Ogawa and Inaba serotypes to be distinguished.  相似文献   

13.
The unimolecular metastable decompositions of dimethoxymethane (CH(2)(OCH(3))(2), 1) and 1,1-dimethoxyethane (CH(3)CH(OCH(3))(2), 2) upon electron impact have been investigated by means of mass-analyzed ion kinetic energy (MIKE) spectrometry, collision-induced dissociation (CID) spectrometry and D-labeling techniques. Both molecular ions are formed at extremely low abundance. Sequential transfers of a methyl group and a hydrogen atom to an ether oxygen are observed during the decomposition of [M - H](+) ions from 1 and 2. The [M - H](+) ion from 2 also decomposes into the m/z 43 ion by the loss of dimethyl ether. Almost complete hydrogen exchange is observed prior to the loss of CH(4) from the m/z 45 ion ([M - OCH(3)](+)) of 1. The m/z 59 ions ([M - OCH(3)](+)) of 2 decompose competitively into the m/z 31 and 29 ions by the losses of C(2)H(4) and CH(2)O, respectively. The former loss occurs via two different fragmentation pathways. The relative abundances of the ions in the MIKE spectra increase with decreases in the total heat of formation (Sigma DeltaH(f)) of the ion plus the neutral fragment. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

14.
IntroductionIn1893,Pietro Biginelli reported the first synthe-sis(termed the Biginelli reaction)of3,4-dihydropyrim-idinone(denoted as“oxo-orO-Biginelli compound”in-cluding its derivatives,type A in Scheme1).In thelast decade,interest in these compounds …  相似文献   

15.
Di(hydroxybutyl) ether (DHBE), a liver protecting drug, is composed of a mixture of three regioisomers: 4‐(3‐hydroxybutoxy)‐2‐butanol (1), 3‐(4‐hydroxy‐2‐butoxy)‐1‐butanol (2), and 3‐(3‐hydroxybutoxy)‐1‐butanol (3). Unequivocal differentiation of each regioisomer of DHBE was rapidly obtained without isolation of the single components, using GC‐MS with electron ionization (EI). The mass spectrum of 1 showed a rearrangement ion at m/z 118, characteristic of the 3‐hydroxybutyl chain, deriving from loss of acetaldehyde from the molecular ion, whereas 2 and 3 were characterized by the ion at m/z 117, expected from α‐cleavage of the 4‐hydroxy‐2‐butyl chain. The species at m/z 118, in turn, loses a water molecule via a mechanism involving both alcohol hydrogens, as shown by deuterium exchange experiments. Both this finding and theoretical calculations support a mechanism in which the loss of acetaldehyde in 1 occurs via a cyclic intermediate, stabilized by a strong hydrogen bond between the alcohol oxygen bearing the charge and the other alcohol oxygen, and involves initial hydrogen transfer from the former to the latter. The EI spectrum of 2, having two 4‐hydroxy‐2‐butyl chains, showed the fragmentations expected from classical fragmentation rules of aliphatic ethers and alcohols, whereas the EI spectrum of 3, bearing one 4‐hydroxy‐2‐butyl and one 3‐hydroxybutyl chain, showed essentially the characteristic fragments of both chains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A mass spectrometric study was carried out on two nonylphenoxycarboxylic acids, NP1EC and NP2EC (where 1 and 2 indicate the number of ethoxylate units attached to the nonylphenoxy moiety), that are persistent metabolites of widely used nonionic surfactant nonylphenol ethoxylates. In a gas chromatographic/mass spectrometric (GC/MS) study of the methyl esters of NP1EC and NP2EC, two series of fragment ions were observed in electron ionization (EI) mass spectra; m/z (179 + 14n, n = 0-7) and m/z (105 + 14n, n = 0-4) for NP1ECMe and m/z (223 + 14n, n = 0-7) and m/z (107 + 14n, n = 0-5) for NP2ECMe. Similarity indices were used to compare quantitatively the mass spectra of isomers. The mass spectra of two isomers were found to be similar whereas those of the remaining isomers were readily distinguishable from each other. The abundant fragment ions of the two NPECMes were investigated further by GC/MS/MS; product ions resulting from cleavage in the alkyl moiety, cleavage in the ECMe moiety and cleavage in both moieties were detected. Possible structures of the nonyl groups in the two esters were inferred. GC/chemical ionization (CI) mass spectra of the NPECMes with isobutane as reagent gas showed characteristic hydride ion-abstracted fragment ions shifted by 1 Da from those in the corresponding EI mass spectra. The sensitivity of a selected ion monitoring quantitation method for the NPECMes is enhanced under CI conditions compared with that under EI conditions. With electrospray ionization MS/MS, [M - H](-) ions of NP1EC (m/z 277) and NP2EC (m/z 321) were observed and, upon collision-induced dissociation of [M - H](-) of each of the two acids, fragment ions of m/z 219 corresponding to deprotonated nonylphenol, were observed in each case. Based on this observation, a rapid, simple and reliable selected product ion quantitation method is proposed for NP1EC and NP2EC.  相似文献   

17.
When zotepine, an antipsychotic drug, was electrochemically oxidized using electrospray ionization mass spectrometry (ESI-MS) coupled with a microflow electrolytic cell, [M + 16 + H]+ (m/z 348), [M-H]+ (m/z 330) and [M-14 + H]+ (m/z 318) were observed as electrochemical oxidation product ions (M represents the zotepine molecule). Although a major fragment ion that was derived from the dimethyl aminoethyl moiety was observed only at m/z 72 in the collision-induced dissociation (CID) spectrum of zotepine, new fragments such as m/z 315 and 286 ions could be generated in the CID spectrum by combining electrochemical oxidation and CID. Since these fragments were relatively specific with high ion strength, it was thought that they would be useful for developing a sensitive LC-MS/MS assay. The S-oxide and N-demethylated products were detected by electrolysis assuring that a portion of P450 metabolites of zotepine could be mimicked by the electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) system.  相似文献   

18.
Collision-induced dissociation (CID) of 8-(4'-hydroxyphenyl)-2'-deoxyguanosine and 8-(2'-hydroxyphenyl)-2'-deoxyguanosine was investigated using sequential tandem mass spectrometry. These adducts represent biomarkers of DNA damage linked to phenolic radicals and were investigated to gain insight into the effects of chemical structure of a C-8 modification on fragmentation pathways of modified 2'-deoxyguanosine (dG). CID in MS(2) of the deprotonated molecules of both the isomers generated the same product ion having the same m/z values. CID in MS(3) of the product ion at m/z 242 and CID in MS(4) experiments carried out on the selected product ions at m/z 225 and m/z 218 afford distinct fragmentation patterns. The conformational properties of isomeric product ions from CID showed that the ortho-isomers possess the unique ability to tautomerize through an intramolecular proton transfer between the phenolic OH group and the imine nitrogen (N7). Tautomerization of ortho-isomers to their keto-tautomers led to differences in their system of conjugated double bonds compared with either their enol-tautomer or the para-isomer. The charge redistribution through the N-7 site on the imidazole ring is a critical step in guanosine adduct fragmentation which is disrupted by the formation of the keto-tautomer. For this reason, different reaction pathways are observed for 8-(4'-hydroxyphenyl)-2'-deoxyguanosine and 8-(2'-hydroxyphenyl)-2'-deoxyguanosine. We present herein the dissociation and the gas-phase ion-molecule reactions for highly conjugated ions involved in the CID ion chemistry of the investigated adducts. These will be useful for those using tandem mass spectrometry for structural elucidation of C-8 modified dG adducts. This study demonstrates that the modification at the C-8 site of dG has the potential to significantly alter the reactivity of adducts. We also show the ability of tandem mass spectrometry to completely differentiate between the isomeric dG adducts investigated.  相似文献   

19.
Lu J  Wang X  Xu Y  Dong Y  Yang S  Wu Y  Qin Y  Wu M 《The Analyst》2011,136(3):467-472
The metabolism and excretion of toremifene were investigated in one healthy male volunteer after a single oral administration of 120 mg toremifene citrate. Different liquid chromatographic/tandem mass spectrometric (LC/MS/MS) scanning techniques were carried out for the characterization of the metabolites in human urine for doping control purposes. The potential characteristic fragmentation pathways of toremifene and its major metabolites were presented. An approach for the metabolism study of toremifene and its analogs by liquid chromatography-tandem mass spectrometry was established. Five different LC/MS/MS scanning methods based on precursor ion scan (precursor ion scan of m/z 72.2, 58.2, 44.2, 45.2, 88.2 relative to five metabolic pathways) in positive ion mode were assessed to recognize the metabolites. Based on product ion scan and precursor ion scan techniques, the metabolites were proposed to be identified as 4-hydroxy-toremifene (m/z 422.4), 4'-hydroxy-toremifene (m/z 422.4), α-hydroxy-toremifene (m/z 422.4), 3,4-dihydroxy-toremifene (m/z 404.2), toremifene acid (m/z 402.2), 3-hydroxy-4-methoxy-toremifene (m/z 456.2), dihydroxy-dehydro-toremifene (m/z 440.2), 3,4-dihydroxy-toremifene (m/z 438.2), N-demethyl-4-hydroxy-toremifene (m/z 408.3), N-demethyl-3-hydroxy-4-methoxy-toremifene (m/z 438.3). In addition, a new metabolite with a protonated molecule at m/z 390.3 was detected in all urine samples. The compound was identified by LC/MS/MS as N-demethyl-4,4'-dihydroxy-tamoxifene. The results indicated that 3,4-dihydroxy-toremifene (m/z 404.2), toremifene acid (m/z 402.2) and N-demethyl-4,4'-dihydroxy-tamoxifene (m/z 390.3) were major metabolites in human urine.  相似文献   

20.
Fragmentation mechanisms of ionized butylbenzene to give m/z 91 and m/z 92 fragment ions have been examined at the G3B3 and G3MP2B3 levels of theory. It is shown that the energetically favored pathways lead to tropylium, Tr(+), and methylene-2,4-cyclohexadiene, MCD(?+), ions. Formation of m/z 91 benzyl ions, Bz(+), by a simple bond fission (SBF) process, needs about 30 kJ/mol more energy than Tr(+). Possible formation of C(7)H(8)(?+) ions of structures different from the retro-ene rearrangement (RER) product, MCD(?+), has been also considered. Comparison with experimental data of this "thermometer" system is done through a kinetic modeling using Rice-Ramsperger-Kassel-Marcus (RRKM) and orbiting transition state (OTS) rate constant calculations on the G3MP2B3 0 K energy surface. The results agree with previous experimental observation if (i) the competitive formation of Tr(+) and Bz(+) is taken into account in the m/z 91 pathway, and (ii) the stepwise character of the RER fragmentation is introduced in the m/z 92 fragmentation route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号