首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Cojocaru 《哲学杂志》2013,93(31):4053-4062
It is known that saturation magnetization of ferromagnetic nanoparticles and nanoclusters deviates strongly from the Bloch T ?3/2 law. To describe the deviation one usually uses a modified power law T α with a size dependent exponent α, which is motivated simply by its flexibility in fitting the observed behavior. By considering the Heisenberg spin model we derive an explicit expression in terms of a magnon gas which generalizes the Bloch formula to a finite size system. Comparison to the experimental data shows good agreement with the observed behavior and gives a better understanding of its physics.  相似文献   

2.
Monte Carlo simulation studies are performed to examine influence of structure and interaction fluctuations on magnetic properties of a ferromagnetic system modelled with a Heisenberg Hamiltonian. It is found that the spontaneous magnetization at low temperature for the multilayered films decreases with temperature in a Bloch law of spin-wave excitations. Both Bloch coefficient B and exponent b vary evidently because of a strong surface and size effect in the finite magnetic films with free boundaries. For the disordered bulk FCC magnet with periodic boundary, the Bloch T3/2 law is followed at low temperature and B is greatly influenced by the structure and interaction fluctuations. At the same time, Bloch coefficient B of the amorphous magnet with the coordination and interaction fluctuations has been derived. The simulated results are in good agreement with the theoretical predictions of spin-wave excitation, and explain the experimental facts well.  相似文献   

3.
Polycrystalline Mn2VGa samples were synthesized using an arc furnace. X-ray diffraction (XRD) pattern was analyzed using General Structural Analysis System (GSAS) package and the refined lattice parameter was found to be 5.905 Å. We found magnetic ordering in the system below 783 K and the spontaneous magnetization was observed to be following the Bloch T3/2 law below 80 K. The magnetic moment per formula unit at 5 K was observed to be 1.88 μB. The temperature variation of the electrical resistance was found to follow the relation Rn=R0n+aTα (α=1.616) and (Rn—normalized electrical resistance) in the temperature range of 25–300 K and we observed almost a temperature independent variation of the electrical resistance below 25 K indicating the absence of spin-flip scattering.  相似文献   

4.
We report Sb-NMR/NQR measurements on a valence fluctuating compound CeIrSb, which is isostructural to the Kondo semiconductors CeRhSb and CeNiSn. The nuclear spin-lattice relaxation rate divided by temperature, 1/T1T has a maximum around 300 K and considerably decreases in proportion to T2 when cooling down, followed by a 1/T1Tconst. behavior below 20 K. These results indicate that CeIrSb has a V-shaped pseudogap with a residual density of states at the Fermi level. The size of pseudogap for CeIrSb is estimated to be about 350 K, which is one order of magnitude larger than the values of 28 K for CeRhSb and 14 K for CeNiSn. The larger size of energy gap in CeIrSb may be attributed to much stronger c-f hybridization than those for CeRhSb and CeNiSn.  相似文献   

5.
Polycrystalline samples of electron-doped Pr1.85Ce0.15CuO4+δ have been prepared under different annealing conditions and investigated by means of X-ray-diffraction, oxygen content analysis, electrical resistivity, magnetic susceptibility and low temperature specific heat measurements. X-ray-diffraction patterns show that samples contain a single T′ phase. The superconducting transition temperatures Tcm taken with the onset of diamagnetism in magnetic-susceptibility measurements are 20 and 19.5 K for sample annealed in flowing Ar gas and in vacuum (∼10−3 torr), respectively. The data of the samples, which are annealed in flowing Ar gas, show clear evidence for an αT2 term at zero magnetic field in superconducting electronic specific heat, and are consistent with d-wave superconductivity. However, this behavior is not observed in the other sample, which is annealed in vacuum. These results indicate that different heat treatments affect the oxygen content, homogeneity, superconducting transition temperature Tc, superconducting volume fraction, and the superconducting pairing symmetry of Pr1.85Ce0.15CuO4+δ.  相似文献   

6.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

7.
The relaxor behavior was revealed in the solid solution (1−x)BaSnO3-xPbTiO3[(1−x)BSn-xPT] with compositions near x=0.50. The real permittivity (ε) and loss tangent (tanδ) exhibit diffuse and dispersive maxima, whose temperature shifts towards a higher temperature upon the increasing frequency. The frequency dependence of the temperature of the dielectric maximum (Tm) follows the Vogel-Fulcher law, as in the canonical relaxor. A deviation from the Curie-Weiss law was observed below the Burns temperature (TB) and well above the Curie temperature (TC). These phenomena are well consistent with typical relaxors, which explains the existence of the relaxor behavior in the (1−x)BSn-xPT solid solution.  相似文献   

8.
The heat capacity of nickel ferrite was measured as a function of temperature from 50 to 1200 °C using a differential scanning calorimeter. A thermal anomaly was observed at 584.9 °C, the expected Curie temperature, TC. The observed behavior was interpreted by recognizing the sum of three contributions: (1) lattice (vibrational), (2) a spin wave (magnetic) component and (3) a λ-transition (antiferromagnetic-paramagnetic transition) at the Curie temperature. The first was modeled using vibrational frequencies derived from an experimentally-based IR absorption spectrum, while the second was modeled using a spin wave analysis that provided a T3/2 dependency in the low-temperature limit, but incorporated an exchange interaction between cation spins in the octahedral and tetrahedral sites at elevated temperatures, as first suggested by Grimes [15]. The λ-transition was fitted to an Inden-type model which consisted of two truncated power law series in dimensionless temperature (T/TC). Exponential equality (m=n=7) was observed below and above TC, indicating symmetry about the Curie temperature. Application of the methodology to existing heat capacity data for other transition metal ferrites (AFe2O4, A=Fe, Co) revealed nearly the same exponential equality, i.e., m=n=5.  相似文献   

9.
The temperature dependences of DC electrical resistivity for perovskite-type oxides Y1−xCaxCoO3 (0?x?0.1), prepared by sol-gel process, were investigated in the temperature range from 20 K up to 305 K. The results indicated that with increase of doping content of Ca the resistivity of Y1−xCaxCoO3 decreased remarkably, which was found to be caused mainly by increase of carrier (hole) concentration. In the whole temperature range investigated the temperature dependence of resistivity ρ(T) for the un-doped (x=0) sample decreased exponentially with decreasing temperature (i.e. ln ρ∝1/T), with a conduction activation energy ; the resisitivity of lightly doped oxide (x=0.01) possessed a similar temperature behavior but has a reduced Ea (0.155 eV). Moreover, experiments showed that the relationship ln ρ∝1/T existed only in high-temperature regime for the heavily doped samples (T?82 and ∼89 K for x=0.05 and 0.1, respectively); at low temperatures Mott's ln ρT−1/4 law was observed, indicating that heavy doping produced strong random potential, which led to formation of considerable localized states. By fitting of the experimental data to Mott's T−1/4 law, we estimated the density of localized states N(EF) at the Fermi level, which was found to increase with increasing doping content.  相似文献   

10.
Thermodynamic properties of Nanocrystalline (NC) materials are essentially different from the conventional coarse-grained materials (with the same chemical composition). The role of grain boundary is very important in the characterization of thermodynamic functions and thermal properties of NC materials when the grain size is less than 100 nm. Therefore, the traditional thermodynamics being applied for coarse-grained materials is not applicable for NC materials. In this study, Quasiharmonic Debye Approximation (QDA) and Equation of State (EOS) methods are used to calculate the Gibbs free energy in NC Fe. Since the Gibbs free energy for Fe, predicted by EOS and QDA methods, is inaccurate (especially at temperatures higher than the ambient temperature), a term called as ΔGExcess is proposed to modify the results. Thus, the Modified QDA (MQDA) and Modified EOS (MEOS) methods are introduced for this purpose. Thereafter, the change in the Gibbs free energy for γ-Fe to α-Fe phase transformation (ΔGγ→α) via the grain size is calculated by MQDA and MEOS methods. The results obtained by the two methods are also compared and discussed. Finally, the critical grain size, at which ΔGγ→α=0, can be estimated at different temperatures, is found to increase with increasing temperature.  相似文献   

11.
12.
Resistivity, ρ, of a II-V group semiconductor n-CdSb doped with In is investigated in pulsed magnetic fields up to and at temperatures . The low-temperature resistivity ρ(T) increasing with T in the range of B<4 T is found to have an upturn around B∼4 T and strong activated behavior at further increase of B. These observations give evidence for magnetic-field-induced metal-insulator transition (MIT). In the insulating side of the MIT, Mott variable-range hopping (VRH) conductivity with two types of asymptotic behavior, ln ρ (T, B)∼T−3/4B2 and ln ρ (T, B)∼(B/T)1/3, is established in low and high magnetic fields, respectively. The VRH conductivity is analyzed using a model of the near-edge electron energy spectrum established by investigations of the Hall effect. The VRH conductivity is shown to take place over the band tail states of one out of two impurity bands, which for T=0 and B=0 lie above the conduction band edge.  相似文献   

13.
We report 75As nuclear quadrupole resonance (NQR) studies on oxypnictide superconductors LaFeAsO1−xFx (x=0.08, 0.15) and LaNiAsO1−xFx (x=0, 0.06, 0.10, 0.12). In LaFeAsO0.92F0.08 (Tc=23 K), nuclear spin-lattice relaxation rate 1/T1 shows no coherence peak just below Tc and decreases with decreasing temperature accompanied by a hump structure at T∼0.4Tc, which is a characteristic of the multigap superconductivity. In the normal state, the quantity 1/T1T increases with decreasing temperature to Tc, indicating that the existence of antiferromagnetic correlation originating from its multiple electronic band structure. On the other hand, LaNiAsO1−xFx shows a clear Hebel-Slichter (coherence) peak just below Tc, evidencing that the LaNiAsO1−xFx is a BCS superconductor. In the normal state, 1/T1T is constant in the temperature range for all LaNiAsO1−xFx, which indicates electron correlations are weak. We suggest that the contrasting behavior of both superconductivity and electron correlations in LaFeAsO0.92F0.08 and LaNiAsO1−xFx between them relate to the difference of electronic band structure configuration. We also provide a possible interpretation for the pseudogap-like behavior in the normal state observed in both compounds.  相似文献   

14.
To investigate the effect of grain boundaries on paraconductivity of YBa2Cu3Ox, melt-textured and c-axis oriented thin films with controlled grain boundaries (superconducting transition width, ΔT, varying between 0.54 and 2.85 K) were prepared, and dc-conductivity has been measured as a function of temperature. In the logarithmic plots of excess-conductivity (Δσ) and reduced temperature (?), starting from low values of ?, we have observed three different regions namely critical region, mean field region and short wave fluctuation region. A correlation is observed between the range of critical region and ΔT, which is found to increase with ΔT. While for ΔT values smaller than 2.5 K only static critical region is observed, for higher ΔTs both static and dynamic critical regions are observed. In the mean field region a crossover from 3D to 2D was observed for all the samples. At ? values larger than 0.24, the excess-conductivity decreased sharply as ?−3, which suggested the existence of the short wave fluctuations.  相似文献   

15.
Elastic properties, thermal expansion coefficients and electronic structures of Ti0.75X0.25C carbides (X=W, Mo, Ta, Nb, V, Hf, Zr, Cr and Al) were systematically investigated using ab initio density functional theory (DFT) calculations. The calculated elastic moduli, electronic structures and thermal expansion coefficients α(T) of pure TiC are in good agreement with experimental data and other DFT calculations. Based on a phenomenological formula, the trends of elastic properties and ductile/brittle behavior of Ti0.75X0.25C were analyzed. It was found that alloying elements W, Mo, Ta, Nb, V and Hf can increase elastic moduli, while Zr, Cr and Al reduce moduli. The nearly free electron model and Debye approximation were applied in the evaluation of α(T). The anharmonic effect was taken into account by including volume-dependent elastic moduli and Debye temperature. Results show that alloying additions of 3d V, 4d Zr and Mo slightly reduce α(T), while 3d Cr increases α(T), Al, 4d Nb, 5d Hf and W almost keep α(T) unchanged in Ti0.75X0.25C at high temperatures. The electronic structures of Ti0.75X0.25C were calculated and analyzed, and the electronic density of states was used to interpret variations of elastic properties and ductile/brittle behavior induced by alloying additions.  相似文献   

16.
The effect of magnetic field h on the magnetic properties of the one-dimensional spin-1 ferromagnetic Heisenberg model is studied by the double-time Green’s function method. The magnetization and susceptibility are obtained within the Callen approximation. The zero-field susceptibility is as a decreasing function of the temperature T. The magnetization m increases in the whole field region, but the susceptibility maximum χ(Tm) decreases. The position Tm of the susceptibility maximum is both solved analytically and fits well to be a power law Tmhγ at low fields and to be linear increasing at high fields. The height χ(Tm) decreases as a power law χ(Tm)∼hβ with h increasing. The exponents (γ,β) obtained in our results agree with the other theoretical results. Our results are roughly in agreement with the results obtained in the experiment of Ni(OH)(NO3)H2O.  相似文献   

17.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

18.
We report an EPR study of the chain conductor o-TaS3 in the low temperature charge density wave (CDW) state. The EPR spectrum is attributed to Fe3+ (S=5/2) impurities. A power law for the temperature dependence of the EPR intensity, (Tα with an exponent α∼0.8) found below ∼30 K is very close to that previously found in magnetic susceptibility measurements. The possible role of these impurities in the susceptibility data are discussed.  相似文献   

19.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

20.
Cobalt ferrite, CoFe2O4, nanoparticles in the size range 2–15 nm have been prepared using a non-aqueous solvothermal method. The magnetic studies indicate a superparamagnetic behavior, showing an increase in the blocking temperatures (ranging from 215 to more than 340 K) with the particle size, D TEM. Fitting M versus H isotherms to the saturation approach law, the anisotropy constant, K, and the saturation magnetization, M S, are obtained. For all the samples, it is observed that decreasing the temperature gives rise to an increase in both magnetic properties. These increases are enhanced at low temperatures (below ~160 K) and they are related to surface effects (disordered magnetic moments at the surface). The fit of the saturation magnetization to the T 2 law gives larger values of the Bloch constant than expected for the bulk, increasing with decreasing the particle size (larger specific surface area). The saturation magnetization shows a linear dependence with the reciprocal particle size, 1/D TEM, and a thickness of 3.7 to 5.1 Å was obtained for the non-magnetic or disordered layer at the surface using the dead layer theory. The hysteresis loops show a complex behavior at low temperatures (T ≤ 160 K), observing a large hysteresis at magnetic fields H > ~1000 Oe compared to smaller ones (H ≤ ~1000 Oe). From the temperature dependence of the ac magnetic susceptibility, it can be concluded that the nanoparticles are in magnetic interaction with large values of the interaction parameter T 0, as deduced by assuming a Vogel–Fulcher dependence of the superparamagnetic relaxation time. Another evidence of the presence of magnetic interactions is the almost nearly constant value below certain temperatures, lower than the blocking temperature T b, observed in the FC magnetization curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号