首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline Zn1−xMnxO(x=0−0.1) powders are prepared by polymeric precursor method and their structural and magnetic properties carefully studied. X-ray diffraction studies and Raman spectroscopy reveal that Mn2+ ions have substituted the Zn2+ ion without changing the würtzite structure of pristine ZnO up to Mn concentrations x≤0.05. The presence of a secondary phase, related to the solubility of Mn in ZnO is evident for higher Mn-doping concentrations. The negative value obtained for the Curie–Weiss temperature indicates that the interactions between the Mn ions are predominantly antiferromagnetic. Thus, no bulk ferromagnetism is evident in any of the studied samples.  相似文献   

2.
3.
The thermal phase transition of RbMnFe(CN)6 has been observed by Mn and Fe 3p-1s X-ray emission spectroscopy (XES) and 1s X-ray absorption spectroscopy (XAS). The thermal variations of the spin states and the valences of Mn and Fe were determined to be Mn2+(S=5/2)-NC-Fe3+(S=1/2) for the high-temperature (HT) phase and Mn3+(S=2)-NC-Fe2+(S=0) for the low-temperature (LT) phase. These transitions are thus caused by charge transfer between Mn and Fe. The temperature dependences of Mn and Fe 3p-1s XES and 1s XAS were observed as the composition of the spectra of the HT and LT phases. The ratios of the HT component in each spectrum show good agreement with the thermal transition curves observed with magnetic susceptibility measurements.  相似文献   

4.
The effect of Fe-doping at Mn-site on the structural and electrical properties of Nd0.67Ba0.33Mn1?xFexO3 (0 ≤ x ≤ 0.05) perovskites has been investigated. X-ray diffraction patterns show that the structural parameters change slightly due to the fact that the Fe3+ ions replacing the Mn3+ have similar ionic radius. The electrical properties of these samples have been investigated using complex impedance spectroscopy technique. a function of the frequency at different temperatures. When increasing the Fe-content, a decrease of dc conductivity was observed throughout the whole explored temperature range and the deduced activation energy values are found to increase from 128 meV for x = 0 to 166 meV for x = 0.05. The curves of the imaginary part of impedance (Z″) show the presence of relaxation phenomenon in our samples. The complex impedance spectra show semicircle arcs at different temperatures and an equivalent circuit of the type of Rg + (Rgb//Cgb) has been proposed to explain the impedance results.  相似文献   

5.
This study reports the structural and magnetic properties of spinel systems Li4Mn5−xTixO12 (“4-5-12” series) and LiNi0.5Mn1.5−xTixO4 (“LNMTO” series), both based on Mn4+ substitution by Ti4+. Intermediate compositions covering the whole range of compositions (0≤x≤5 and 0≤x≤1.5, respectively) were prepared by solid state reaction. The 4-5-12 system forms a continuous spinel solid solution, whereas the spinel phase range in LNMTO stops before the end member “LiNi0.5Ti1.5O4”, which is multi-phased with a major hexagonal phase component. Cell parameters and (Mn,Ti)-O distances increase monotonically with titanium content in both series. In the LNMTO series, the end member LiNi0.5Mn1.5O4 is known to form a superstructure with Ni/Mn cation ordering. Neutron diffraction and Raman spectroscopy show that this order is lost when Ti is substituted, even at low level (x=0.15). The LNMTO crystal chemistry is also complicated by the presence of partial cation inversion, and the presence of a secondary rocksalt-type phase that modifies the spinel stoichiometry. Magnetic properties are characterized by a competition between ferromagnetic and antiferromagnetic interactions; no magnetic ordering is achieved, in agreement with B-site cation frustration and disorder. Electrochemical measurements show that the Ti3+/4+ and Mn3+/4+ redox couples behave independently in the 4-5-12 series, and that titanium decreases the high-potential electrochemical redox activity of LNMTO because of its blocking character for electron transfer to and from the nickel sites in the spinel structure.  相似文献   

6.
《Current Applied Physics》2020,20(11):1263-1267
We have fabricated Ba0.95Y0.05Fe12-xMnxO19 samples with large Mn-doping amounts of x = 4 and 6, using the mechanical milling and heat treatment. X-ray diffraction analysis indicated the samples crystallized in the M-type hexaferrite structure. The Mn doping caused the modification, shift and broadening of some characteristic phonon-vibration modes, which were recorded by Raman spectroscopy. This is due to an incorporation of Mn ions into the M-type structure that disorders the periodic lattice and changes symmetry. Basing on X-ray absorption spectroscopy, we have found Fe in all samples stable with an oxidation state 3+ (Fe3+). Though Mn2+ and Mn3+ ions coexist, the concentration of Mn2+ in x = 4 is larger than that in x = 6. The analysis of Fourier-transform spectra have demonstrated the replacement of Mn2+,3+ ions for Fe3+ in the M-type structure. The sites of Mn2+,3+ ions in this structure have been discussed.  相似文献   

7.
We characterized ZnGa2O4:Mn2+ (ZnGa2O4—zinc gallate) nanophosphor synthesized by the solvothermal method in 1,4-butanediol-containing water to increase the amount of Mn2+ ions incorporated in the ZnGa2O4 matrix without post-heat treatment. We investigated the influence of water content in the solvent on the photoluminescence (PL) intensity and the Mn amount, the latter being measured by X-ray fluorescence analysis and electron paramagnetic resonance spectroscopy. The PL intensity per Mn amount reached the maximum at the 50 wt% water content. The addition of water promotes repeated dissolution and precipitation, resulting in homogeneous Mn2+ distribution in the ZnGa2O4 matrix. This suggests that the solvothermal method in the 1,4-butanediol-water system is useful for increasing the amount of Mn2+ ions incorporated in the ZnGa2O4 matrix without post-heat treatment. At the water content >50 wt%, the decrease in PL intensity is attributed to the optical absorption of the by-product, MnOOH.  相似文献   

8.
Cd0.9Mn0.1S semiconductor nanorods were successfully prepared by the hydrothermal reaction of CdCl2·2.5H2O and MnCl2·5H2O with (NH4)2S in aqueous solution. Atomic absorption spectrometry (AAS) and energy dispersive spectroscopy (EDS) were used to determine the Mn contents of these complex nanorods. The samples were characterized by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis absorption spectra, photoluminescence (PL) and compared with the undoped CdS nanorods. The results showed that nanostructured multiplex compounds with high aspect ratio were obtained via hydrothermal method. The products showed almost totally rod-like morphology with approximately identical diameter about 20 nm and the maximal length up to 200 nm.  相似文献   

9.
Aqueous electrochemical insertion of M+ (Na+ and H+) species into WO3(4,4′-bipyridyl)0.5 has been carried out. The chemical states and structure of the resulting product were analysed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). XPS showed the presence of W6+ as well as the usual reduced W species (W5+) which is responsible for a change in colour. Moreover, the presence of these intercalates correlates with the evolution of the reduced W species. The bulk structure of the layered hybrid, as determined by powder X-ray diffraction, showed no alteration after electrochemistry, in contrast to the same measurements on tungsten trioxide (WO3). This however concurs with single-crystal X-ray studies, which show little change in lattice parameters with Na+ insertion. Four-probe resistance measurements of the layered hybrid coated film display a drop in resistance after electrochemistry, which can be attributed to the injection of charge-carriers into the conduction band.  相似文献   

10.
The valence state of the Mn ions in ceramic samples of the La1?α BiLaβMnLa1?δ OLa3±γ composition (LBMO) has been studied using the X-ray photoelectron spectroscopy. The presence of Mn3+ and Mn4+ ions in these compounds has been shown. The relative content Mn3+/Mn4+ has been determined by means of fitting the experimental Mn 2p spectra by the superposition of theoretical spectra of Mn3+ and Mn4+ ions. The elemental composition of the samples has been determined by the X-ray photoelectron spectroscopy and electron probe microanalysis. It has been established that the relative content of Mn4+ ions correlates with parameter δ, which characterizes the deviation of the actual elemental composition of the La1?α BiLaβMnLa1?δ OLa3±γ ceramics from stoichiometry La1 ? x Bi x MnO3.  相似文献   

11.
ZnO/ZnO:Mn core-shell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the core-shell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.  相似文献   

12.
Electron paramagnetic resonance (EPR) spectroscopy in combination with thermal methods were used to identify and characterize Mn2+ in the Chinese loess that is a multimineral system. EPR spectra of the loess samples from the classic loess-paleosol section in central China show the presence of trace amounts of Mn2+; whereas paleosol samples present no Mn2+ EPR signal. The spectral changes upon step heating from room temperature to 1000 °C suggest that this EPR signal in the loess arises from Mn substituted into CaCO3. This study provides a direct evidence that the loess-paleosol profiles were formed under the changing redox conditions caused by a past climatic change.  相似文献   

13.
Synthesis and magnetic properties of Mn doped ZnO nanowires   总被引:1,自引:0,他引:1  
Mn doped ZnO nanowires have been synthesized using a simple autocombustion method. The as-synthesized Mn doped ZnO nanowires were characterized by X-ray diffraction and transmission electron microscopy. An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Mn concentration. Optical absorption studies show an increment in the band gap with increasing Mn content, and also give evidence for the presence of Mn2+ ions in tetrahedral sites. All Zn1−xMnxO (0≤x≤0.25) samples are paramagnetic at room temperature. However, a large increase in the magnetization is observed below 50 K. This behavior, along with the negative value of the Weiss constant obtained from the linear fit to the susceptibility data below room temperature, indicate ferrimagnetic behavior. The origin of ferrimagnetism is likely to be either the intrinsic characteristics of the Mn doped samples, or due to some spinel-type impurity phases present in the samples that could not be detected.  相似文献   

14.
Present study reports the detailed structural and magnetic, as well as chemical analysis of polycrystalline Zn1−xMnxO (where x=0, 0.005, 0.01, 0.03, 0.05 and 0.1) samples synthesized by the high-temperature solid state reaction route. X-ray diffraction studies reveal the presence of secondary phase for higher Mn-doping concentrations (x≥0.03). Secondary phase formation having spinel structure is confirmed and reported as an evidence for the first time using transmission electron microscopy study. Chemical investigations using X-ray photoelectron spectroscopy showed the presence of Mn in two valence states. From the observed results we are of the opinion that Zn2+ ions, mainly present at or near grain boundaries, diffuse into manganese oxide to form a stable spinel phase ZnxMn3−xO4 at or near the grain boundaries of ZnO/Zn1−xMnxO. Magnetization measurements did not show any magnetic transition down to 5 K.  相似文献   

15.
The polycrystalline samples of Pb(Zr0.65−xMnxTi0.35)O3 (PZMT) (x=0, 0.05, 0.10, 0.15) were prepared by a high-temperature solid-state reaction technique. Detailed studies on the effect of compositional variation of manganese (Mn) on the electrical behavior (complex impedance Z*, complex modulus M*, electrical conductivity and relaxation mechanisms) of the PZMT systems have been carried out by a nondestructive complex impedance spectroscopy (CIS) technique at 400 °C. The Nyquist plots suggest that the grains only are responsible in the conduction mechanism of the materials. The occurrence of single arc in the complex modulus spectrum of all the compositions of Mn confirms the single-phase characteristics of the PZMT compounds, and also confirms the presence of non-Debye type of multiple relaxation in the material.  相似文献   

16.
The electronic structure and interfacial chemistry of thin manganese films on p-Si (1 0 0) have been studied by photoelectron spectroscopy measurements using synchrotron radiation of 134 eV and from X-ray diffraction data. The Mn/p-Si structures have been irradiated from swift heavy ions (∼100 MeV) of Fe7+ with a fluence of 1 × 1014 ions/cm2. Evolution of valence band spectrum with a sharp Fermi edge has been obtained. The observed Mn 3d peak has been related to the bonding of Mn 3d-Si 3sp states. Mn 3p (46.4 eV), Mn 3s (81.4 eV) and Si 2p (99.5 eV) core levels have also been observed which show a binding energy shift towards lower side as compared to their corresponding elemental values. From the photoelectron spectroscopic and X-ray diffraction results, Mn5Si3 metallic phase of manganese silicide has been found. The silicide phase has been found to grow on the irradiation.  相似文献   

17.
The effect of introducing nitrogen and oxygen in the sputtering working gas on the magnetic properties of Mn:ZnO thin films has been investigated. A set of films has been characterized by X-ray diffraction, X-ray absorption near edge structure (XANES) and optical absorption spectroscopy to correlate its magnetic properties with Mn electronic characteristics. Mn2+ substituting Zn2+ in the wurtzite structure has been obtained for the films presenting considerably high saturation magnetization values. The change in the magnetic behaviour seems to be associated with the electronic carrier density in the films.  相似文献   

18.
The polycrystalline samples of BaTi1−xMnxO3 (BMT) ferroelectric ceramics with x=0, 0.04, 0.07, 0.10 have been prepared using a solid-state reaction technique. The calcination temperature of the samples was optimized by thermal gravimetric analysis and repeated firing. Preliminary structural study using X-ray diffraction technique at room temperature suggests that structure of Mn modified compounds (BMT) change into orthorhombic crystal system from tetragonal crystal system. The field emission scanning electron micrographs (FE-SEM) show uniform grain distribution throughout the surface of the samples. Complex impedance analysis (CIS) has been carried out to investigate the electrical properties of BMT. The real and imaginary part of complex impedance plots exhibit semicircle(s) in the complex plane. The bulk resistance of the material decreases with rise in temperatures similar to a semiconductor. The variation of bulk ac conductivity with frequency shows that the compounds exhibit dispersive type electrical conductivity.  相似文献   

19.
This paper reported that the Mn-doped TiO2 films were prepared by radio frequency (RF) magnetron cosputtering. X-ray diffraction measurements indicate that the samples are easy to form the futile structure, and the sizes of the crystal grains grow big and big as the Mn concentration increases. X-ray photoemlssion spectroscopy measurements and high resolution transmission electron microscope photographs confirm that the manganese ions have been effectively doped into the TiO2 crystal when the Mn concentration is lower than 21%. The magnetic property measurements show that the Ti1-xMnxO2 (x = 0.21) films are ferromagnetic at room temperature, and the saturation magnetization, coercivity, and saturation field are 16.0 emu/cm^3, 167.5 × 80 A/m and 3740 × 80 A/m at room temperature, respectively. The room-temperature ferromagnetism of the films can be attributed to the new futile Ti1-xMnxO2 structure formed by the substitution of Mn^4+ for Ti^4+ into the TiO2 crystal .lattice, and could be explained by O vacancy (Vo)-enhanced ferromagnetism model.  相似文献   

20.
The structural and magnetic properties of the mixed spinel Mg1+xMnxFe2-2xO4 system for 0.1<= x <= 0.9 have been studied by means of X-ray diffraction, magnetization, a.c. susceptibility and Mössbauer spectroscopy measurements. X-ray intensity calculations indicate that Mn4+ ions occupy only octahedral (B) sites replacing Fe3+ ions and the added Mg2+ ions substitute for A-site Fe3+ ions. All samples are magnetic at 12 K displaying Mössbauer spectra that have magnetic sextets coexisting with a central doublet that increases in population with increasing Mn concentration, indicating the presence of short range ordering (clustering). The Mössbauer intensity data show that Mn possesses a preference for the B-site of the spinel over the whole range of concentration. As expected, the hyperfine field and Curie temperature determined from a.c.susceptibility data decrease with increasing Mn content. Magnetization results indicate that on increasing dilution x, the collinear ferrimagnetic phase breaks down at x = 0.3 before reaching the ferrimagnetic percolation limit (x=0.6), as a result of the presence of competing exchange interactions, which is well supported by Mössbauer results. From all the above results, it is proposed that with increasing Mn content from x=0.6 to 0.9, the frustration and disorder increase in the system suppressing the ferrimagnetic ordering, and the system approaches to a cluster spin glass type of ordering at x=0.8 as reflected in the a.c.susceptibility and Mössbauer spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号