首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] combined to a home-made Monte Carlo simulation, the present work deals with backscattering coefficients, mean penetration depths and stopping profiles for 1-4 keV electrons normally incident impinging on Al and Cu thin film targets. The cross-sections used to describe the electron transport are calculated via the appropriate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] whose new improved version has been recently given [Z. Rouabah, N. Bouarissa, C. Champion, N. Bouaouadja, Appl. Surf. Sci. 255 (2009) 6217]. The behavior of the backscattering coefficient, mean penetration depth and stopping profiles versus the metallic film thickness at the nanometric scale and beyond is here analyzed and discussed.  相似文献   

2.
The Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] combined with a Monte Carlo simulation are used to investigate the transport of 0.5-4 keV electrons in solid targets. The cross-sections used to describe the electron transport have been calculated via a new improved version of the approximate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470]. Some applications are presented here for the calculation of electron backscattering coefficient in semi-infinite Al and Cu targets. The obtained results accord with success with the experiment and clearly represent an improvement with respect to previous theoretical calculations.  相似文献   

3.
The accuracy of the Ashley's optical-data model [J.C. Ashley, J. Electron Spectrosc. Relat. Phenom. 50 (1990) 323] for describing the energy loss rate and inelastic mean free path of low-energy electrons in Al and Cu has been examined through the use of Ashley's model for calculating the electron penetration range. The latter has also been calculated using the empirical expressions reported by Iskef et al. [Phys. Med. Biol. 28 (1983) 535] and Gryzinski excitation function. The resulting range of penetration is used for determining the electron backscattering coefficients via the use of Vicanek and Urbassek theory [Phys. Rev. B 44 (1991) 7234] where the transport cross-sections are obtained from Rouabah et al. [Appl. Surf. Sci. 255 (2009) 6217] approximation. Besides the electron backscattering coefficients have been calculated from Monte Carlo simulation in which the inelastic scattering processes are handled using Ashley dielectric approach. It is found that the use of Ashley's optical model via Monte-Carlo method gives backscattering coefficients more accurate than those obtained via Vicanek and Urbassek theory. This confirms the accuracy of Ashley's optical model and shows that the Monte-Carlo method is much more accurate and precise than the Vicanek and Urbassek semi-empirical approach.  相似文献   

4.
In the present study, we have performed Monte Carlo simulation of 1–4 keV electrons impinging on semi-infinite Al and Au to determine the transport cross-section, the backscattering coefficient and the mean penetration depth using a new approximation of the differential elastic scattering cross section. The mean number of the wide angle collisions suffered by the electron before slowing down to rest, and the backscattering coefficient are analytically calculated using Vicanek and Urbassek theory. The analytical results are compared with the numerical ones obtained from Monte Carlo simulation. The present results are found to reveal good agreement with experimental results. PACS 68.37.-d; 68.37.Nq  相似文献   

5.
We report a simplified correction for the electron transport cross sections (TCSs) for a number of selected atomic targets ranging from H to U and electron energies between 50 and 4000 eV. The correction has been made to the approximate analytical expression of transport cross sections derived by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] where an argued parameter is introduced. The latter is obtained from a polynomial fit. The energy dependence of the percentage deviation between TCSs from the corrected expression and those obtained from other sources is presented. The TCSs calculated in the present work showed better agreement with accurate values of TCSs than those reported in earlier publications. This may facilitate the evaluation of parameters needed for quantitative Auger-electron spectroscopy and X-ray photoelectron spectroscopy.  相似文献   

6.
Transport cross sections (TCS) for positron impinging on a number of selected atomic targets have been calculated in the energy range 1–4 keV. The calculations were performed by using a simplified correction of the approximate analytical expression of transport cross sections reported by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470]. An argued parameter–obtained from both an exponential and polynomial fits–was then introduced. The agreement generally observed between our results and those previously reported in the literature is quite good, especially for positron energies greater than 2 keV. Furthermore, an attempt has been made for scaling the TCS with the atomic number of solid targets of interest. Such a scaling was found to be possible for both exponential and third order polynomial fits. The information gathered by the present study may be useful for the evaluation of parameters needed for quantitative low-energy positron annihilation spectroscopy.  相似文献   

7.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

8.
[1]M.Alford,K.Rajagopal,and F.Wilczek,Phys.Lett.B 422 (1998) 247; Nucl.Phys.B 537 (1999) 443. [2]M.Gyulassy and L.McLerran,arXiv:nucl-th/0405013;E.V.Shuryak,arXiv:hep-ph/0405066. [3]K.Rajagopal and F.Wilczek,hep-ph/0011333. [4]M.Alford,Chris Kouvaris,and K.Rajagopal,hepph/0406137. [5]Y.Nambu and G.Jona-Lasinio,Phys.Rev.122 (1961)345. [6]R.T.Cahill and C.D.Roberts,Phys.Rev.D 32 (1985)2419. [7]R.T.Cahill and Susan M.Ganner,hep-ph/9812491. [8]A.W.Steiner,S.Reddy,and M.Prakash,Phys.Rev.D 66 (2002) 094007. [9]P.Amore,M.C.Birse,J.A.McGovern,and N.R.Walet,Phys.Rev.D 65 (2002) 074005. [10]M.Alford and K.Rajagopal,JHEP 0206 (2002) 031. [11]Xiao-Fu Li,Yu-Xin Liu,Hong-Shi Zong,and En-GuangZhao,Phys.Rev.C 58 (1998) 1195. [12]H.Reinhardt,Phys.Lett.B 244 (1990) 2. [13]Steven Weinberg,The Quantum Theory of Fields,Vol.2,Cambridge University Press,Cambridge (1996) p.348.  相似文献   

9.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

10.
[1]J.H. Hamilton,A. VRamayya, W.T. Pinkston, et al.,Phys. Rev. Lett. 32 (1974) 239. [2]R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27(2001) R109. [3]J.H. Hamilton, Nukleonika 24 (1979) 561. [4]W.C. Ma, et al., Phys. Lett. B 139 (1984) 276. [5]R. Bengtsson, et al., Phys. Lett. B 183 (1987) 1. [6]S. Yoshida and N. Takigawa, Phys. Rev. C 55 (1996)1255. [7]T. Niksic, D. Vretenar, P. Ring, et al., Phys. Rev. C 65(2002) 054320. [8]F.G. Condev, M.P. Carpenter, R.V.F. Janssens, et al.,Phys. Lett. B 528 (2002) 221. [9]D.G. Jenkins, A.N. Andreyev, R.D. Page, et al., Phys.Rev. C 66 (2002) 011301(R). [10]B.D. Serot and J.D. Walecka, Adv. Nuc]. Phys. 16 (1986)1. [11]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [12]J. Meng and P. Ring, Phys. Rev. Lett. 77 (1996) 3963. [13]J. Meng and P. Ring, Phys. Rev. Lett. 80 (1998) 460. [14]S.K. Patra, S. Yoshida, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1924. [15]S. Yoshida, S.K. Patra, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1938. [16]G.A. Lalazissis and P. Ring, Phys. Lett. B 427 (1998)225. [17]Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, and Yong Zhou, Phys. Rev. C 65 (2002) 064305. [18]G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1. [19]G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)409. [20]G. Audi and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1. [21]P. MOller and J.R. Nix, Atom. Data and Nucl. Data Table 59 (1995) 307.  相似文献   

11.
The structural and magnetic properties of Sm ion-implanted GaN with different Sm concentrations are investigated. XRD results do not show any peaks associated with second phase formation. Magnetic investigations performed by superconducting quantum interference device reveal ferromagnetic behavior with an ordering tem- perature above room temperature in all the implanted samples, while the effective magnetic moment per Sin obtained from saturation magnetization gives a much higher value than the atomic moment of Sm. These results could be explained by the phenomenological model proposed by Dhar et al. [Phys. Rev. Lett. 94(2005)037205, Phys. Rev. B 72(2005)245203] in terms of a long-range spin polarization of the GaN matrix by the Sm atoms.  相似文献   

12.
We establish the connection between a paper by Kartner et al. [F.X. Kartner, D.M. Zumbuhl, N. Matuschek, Phys. Rev. Lett. 82 (1999) 4428] entitled “Turbulence in mode-locked lasers”, and earlier work on the role of noise in mode-locked laser systems. We present numerical results that broadly support the analytical results of Kartner et al.  相似文献   

13.
[1]V.D.Burkert,Phys.Lett.B 72 (1997) 109. [2]S.Capstick and W.Roberts,Prog.Part.Nucl.Phys.45 (2000) S241,and references therein. [3]B.S.Zou,Nucl.Phys.A 675 (2000) 167c; B.S.Zou,Nucl.Phys.A 684 (2001) 330; BES Collaboration (J.Z.Bai,et al.) Phys.Lett.B 510 (2001) 75; BES Collaboration (M.Ablikim,et al.),hep-ex/0405030. [4]R.Sinha and Susumu Okubo,Phys.Rev.D 30 (1984)2333. [5]W.H.Liang,P.N.Shen,B.S.Zou,and A.Faessler,Euro.Phys.J A 21 (2004) 487. [6]Particle Data Group,Euro.Phys.J.C 15 (2000) 1. [7]K.Tsushima,A.Sibrtsev,and A.W.Thomas,Phys.Lett.B 390 (1997) 29. [8]J.Kogut,Rev.Mod.Phys.51 (1979) 659; Rev.Mod.Phys.55 (1983) 775. [9]Q.Haider and L.C.Liu,J.Phys.G 22 (1996) 1187; L.C.Liu and W.X.Ma,J.Phys.G 26 (2000) L59. [10]V.G.J.Stoks,R.A.M.Klomp,C.P.F.Terheggen,and J.J.de Swart,Phys.Rev.C 49 (1994) 2950. [11]H.Haberzettl,C.Bennhold,T.Mart,and T.Feuster,Phys.Rev.C 58 (1998) R40. [12]Y.Oh,A.I.Titov,and T.-S.H.Lee,Phys.Rev.C 63(2001) 25201.  相似文献   

14.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

15.
H.C. Poon 《Surface science》2006,600(12):2505-2509
A structural study has been performed on the MgO(1 1 1)-(1 × 1) surface by low energy electron diffraction (LEED) using experimental data obtained with a delay-line-detector LEED (DLD-LEED) system to minimize electron damage. It was found that the surface is terminated by a hydroxide layer with the top O-Mg interlayer spacing equal to 1.02 Å, which is close to the spacings between Mg and O planes in bulk brucite crystals (Mg(OH)2). This is in good agreement with a recent study using photoelectron diffraction (PhD) spectroscopy and density functional theory calculation (DFT) [V.K. Lazarov, R. Plass, H.-C. Poon, D.K. Saldin, M. Weinert, S.A. Chambers, M. Gajdardziska-Josifovska, Phys. Rev. B 71 (2005) 115434]. The second interlayer spacing shows a small expansion of 3% and the third is bulk-like, while the DFT calculation predicted that the spacings below the top one are all bulk-like. This result clearly favors hydroxylation [K. Refson, R.A. Wogelius, D.G. Fraser, M.C. Payne, M.H. Lee, V. Milman, Phys. Rev. B 52 (1995) 10823] as a way of stabilizing the MgO(1 1 1) surface at low temperature over metallization, which has a top layer spacing of 0.86 Å for O termination and 1.25 Å for Mg termination [Lazarov et al. 2005; T. Tsukada, T. Hoshino, Phys. Soc. Jpn. 51 (1982) 2562, J. Goniakowski, C. Noguera, Phys. Rev. B 60 (1999) 16120].  相似文献   

16.
[1]C.O.Weiss and R.Vilaseca,Dynamics of Lasers,VCH,Weinheim (1991); Instabilities and Chaos in Quantum Optics,eds.F.T.Arecchi and R.G.Harrison,Springer-Verlag,Berlin (1987). [2]H.Haken,Phys.Lett.A 53 (1975) 77. [3]Ju Rui,Huang Hong-Bin,Yang Peng,Xie Xia,and Zhao Huan,Commun.Theor.Phys.(Beijing,China) 44 (2005) 65; Ju Rui,Zhang Ya-Jun,Huang Hong-Bin,and Zhao Huan,Acta Phys.Sin.53 (2004) 2191 (in Chinese). [4]C.Z.Ning and H.Haken,Z.Phys.B 77 (1989) 247; B 77 (1989) 157; B 77 (1989) 163; J.Zakrenwski and M.Lewenstein,Phys.Rev.A 45 (1992) 2057. [5]G.J.deValearcel,E.Roldan,and R.Vilaseca,Phys.Rev.A 45 (1992) R2674; Phys.Rev.A 49 (1994) 1243. [6]X.Xie,H.B.Huang,F.Qian,Y.J.Zhang,P.Yang,and G.X.Qi,Commun.Theor.Phys.(Beijing,China) 46 (2006) 1042. [7]X.L.Deng,H.Q.Ma,B.D.Chen,and H.B.Huang,Phys.Lett.A 290 (2001) 77. [8]C.Benkert,and M.O.Scully,Phys.Rev.A 42 (1990) 2817. [9]M.O.Scully and M.S.Zubairy,Quantum Optics,Cambridge University Press,Cambridge (1997).  相似文献   

17.
[1]J.Gasser,H.Leutwyler,and M.E.Sainio,Phys.Lett.B 253 (1991) 252. [2]John Ellis,Eur.Phys.J.A 24S2 (2005) 3,[arXive:hepph/0411369]. [3]T.Inoue,V.E.Lyubovitskij,Th.Gutsche,and Amand Faessler,Phys.Rev.C 69 (2004) 035207,[arXive:hepph/0311275]. [4]M.M.Pavan,I.I.Strakovsky,R.L.Workman,and R.A.Arndt,PiN Newslett.16 (2002) 110,[arXive:hepph/0111066]. [5]V.E.Lyubovitskij,Th.Gutsche,Amand Faessler,and E.G.Drukarev,Phys.Rev.D 63 (2001) 054026,[arXive:hep-ph/0009341]. [6]S.D.Bass,Phys.Lett.B 329 (1994) 358,[arXive:hepph/9404294]. [7]Marc Knecht,PiN Newslett.15 (1999) 108,[arXive:hepph/9912443]. [8]P.Schweitzer,Phys.Rev.D 69 (2004) 034003. [9]B.C.Lehnhart,J.Gegelia,and S.Scherer,J.Phys.G 31(2005) 89,[arXive:hep-ph/0412092]. [10]P.J.Ellis and K.Torikoshi,Phys.Rev.C 61 (1999)015205. [11]Gerald E.Hite,William B.Kaufmann,and Richard J.Jacob,Phys.Rev.C 71 (2005) 065201. [12]S.Weinberg,Physica A 96 (1979) 327. [13]J.Gasser and H.Leutwyler,Nucl.Phys.B 250 (1985)465. [14]J.Gasser,M.E.Sainio,and A.Svarc,Nucl.Phys.B 307(1988) 779. [15]P.Papazoglou,D.Zschiesche,S.Schramm,J.SchaffnerBielich,H.St(o)cker,and W.Greiner,Phys.Rev.C 59(1999) 411. [16]T.Fuchs and J.Gegelia,Phys.Rev.D 68 (2003) 056005.  相似文献   

18.
The melting curve of silicon has been determined up to 15 GPa using a miniaturized Kawai-type apparatus with second-stage cubic anvils made of X-ray transparent sintered diamond. Our results are in good agreement with the melting curve determined by electrical resistivity measurements [V.V. Brazhkin, A.G. Lyapin, S.V. Popova, R.N. Voloshin, Nonequilibrium phase transitions and amorphization in Si, Si/GaAs, Ge, and Ge/GaSb at the decompression of high-pressure phases, Phys. Rev. B 51 (1995) 7549] up to the phase I (diamond structure)—phase II (β-tin structure)—liquid triple point. The triple point of phase XI (orthorhombic, Imma)—phase V (simple hexagonal)—liquid has been constrained to be at 14.4(4) GPa and 1010(5) K. These results demonstrate that the combination of X-ray transparent anvils and monochromatic diffraction with area detectors offers a reliable technique to detect melting at high pressures in the multianvil press.  相似文献   

19.
It has recently been shown that growth of a multilayer structure with one or more delta-layers at high temperature leads to spreading and asymmetrization of the dopant distribution [see, for example, E.F.J. Schubert, Vac. Sci. Technol. A. 8, 2980 (1990), A.M. Nazmul, S. Sugahara, M. Tanaka, J. Crystal Growth 251, 303 (2003); R.C. Newman, M.J. Ashwin, M.R. Fahy, L. Hart, S.N. Holmes, C. Roberts, X. Zhang, Phys. Rev. B 54, 8769 (1996); E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.C. Hopkins, N.J. Sauer, J. Appl. Phys. 67, 1969 (1990); P.M. Zagwijn, J.F. van der Veen, E. Vlieg, A.H. Reader, D.J. Gravesteijn, J. Appl. Phys. 78, 4933 (1995); W.S. Hobson, S.J. Pearton, E.F. Schubert, G. Cabaniss, Appl. Phys. Lett. 55, 1546 (1989); Delta Doping of Semiconductors, edited by E.F. Schubert (Cambridge University Press, Cambridge, 1996); Yu.N. Drozdov, N.B. Baidus', B.N. Zvonkov, M.N. Drozdov, O.I. Khrykin, V.I. Shashkin, Semiconductors 37, 194 (2003); E. Skuras, A.R. Long, B. Vogele, M.C. Holland, C.R. Stanley, E.A. Johnson, M. van der Burgt, H. Yaguchi, J. Singleton, Phys. Rev. B 59, 10712 (1999); G. Li, C. Jagadish, Solid-State Electronics 41, 1207 (1997)]. In this work analytical and numerical analysis of dopant dynamics in a delta-doped area of a multilayer structure has been accomplished using Fick's second law. Some reasons for asymmetrization of a delta-dopant distribution are illustrated. The spreading of a delta-layer has been estimated using example materials of a multilayer structure, a delta-layer and an overlayer.  相似文献   

20.
通过介绍六粒子纠缠态的新应用研究,提出了一个二粒子任意态的信息分离方案.在这个方案中,发送者Alice、控制者Charlie和接受者Bob共享一个六粒子纠缠态,发送者先执行两次Bell基测量|然后控制者执行一次Bell基测量|最后接受者根据发送者和控制者的测量结果,对自己拥有的粒子做适当的幺正变换,从而能够重建要发送的二粒子任意态.这个信息分离方案是决定性的,即成功概率为100%.与使用相同的量子信道进行二粒子任意态的信息分离方案相比,本文提出的方案只需要进行Bell基测量而不需要执行多粒子的联合测量,从而使得这个方案更简单、更容易,并且在目前的实验室技术条件下是能够实现的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号