首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the spin-flip process from the first excited state to the ground state due to the spin-phonon coupling in a two-electron quantum dot in the presence of a magnetic field. We give several possible relaxation channels before and after the crossing of the Zeeman sublevels. Our results show that the Coulomb interactions between the electrons of different channels play quite different roles and thus inducing different spin relaxation behaviors.  相似文献   

2.
3.
We analytically evaluate charge and spin density response functions of the clean two-dimensional electron gas with Rashba spin-orbit coupling at finite momenta and frequencies. On the basis of our exact expressions we discuss the accuracy of the long-wavelength and the quasiclassical approximations. We also derive the static limit of spin susceptibilities and demonstrate, in particular, how the Kohn-like anomalies in their derivatives are related to the spin-orbit modification of the Ruderman-Kittel-Kasuya-Yosida interaction. Taking into account screening and exchange effects of the Coulomb interaction, we describe the collective charge and spin density excitation modes which appear to be coupled due to nonvanishing spin-charge response function.  相似文献   

4.
We show first results and systematic investigations of a matter wave interferometer with the K2 molecule, using a transition between the electronic ground state X and the state b . This spin forbidden transition is observable due to spin-orbit coupling between the states b and A . The experimental results are compared with numerical simulations, which show the power of the interferometer to observe small phase shifts by weak interactions. Received 13 March 2000  相似文献   

5.
Local density approximation plus on-site Coulomb interaction U band structure calculations reveal that SrRuO3 exhibits a half-metallic ground state with an integer spin moment of 2.0 microB/SrRuO3. An associated tilting 4dt2g orbital ordering on a Ru sublattice is observed under the on-site Coulomb interaction U in the presence of lattice distortion. This finding unravels the on-site Coulomb correlation as the driving force of the 4d orbital ordering and Jahn-Teller distortion as well as of the half-metallic ground state.  相似文献   

6.
We study numerically the ground state magnetization for clusters of interacting electrons in two dimensions in the regime where the single particle wave functions are localized by disorder. It is found that the Coulomb interaction leads to a spontaneous ground state magnetization. For a constant electronic density, the total spin increases linearly with the number of particles, suggesting a ferromagnetic ground state in the thermodynamic limit. The magnetization is suppressed when the single particle states become delocalized.  相似文献   

7.
The electronic band structure of CeAgSb2 has been calculated using the self-consistent full potential nonorthogonal local orbital minimum basis scheme based on the density functional theory. We investigated the electronic structure with the spin-orbit interaction and on-site Coulomb potential for the Ce-derived 4f orbitals to obtain the correct ground state of CeAgSb2.  相似文献   

8.
By using the density matrix renormalization group (DMRG) and the self-consistent numerical method, we obtain a high spin ground state with localized spin density describing spin localization and the soliton describing the distortion of the lattice configurations along the main chain. Different electron-phonon interactions result in different configurations of solitons. When the electron-phonon coupling along the main chain is larger than a critical value , a transition from a single soliton-like distortion to a pair of soliton-like distortions along the main chain takes place. Such critical value depends mainly on the intersite Coulomb interactions. The spin density wave along the main chain is always localized around the center of soliton-like distortions. Received 2 July 2001 and Received in final form 25 September 2001  相似文献   

9.
The electronic structure and the metal-insulator transition (MIT) of V2O3 are investigated in the framework of density functional theory and GGA+U. It is found that, both the insulating and metallic phases can be realized in rhombohedral structure by varying the on-site Coulomb interaction, and the MIT in V2O3 can take place without any structure phase transition. Our calculated energy gap (0.63 eV) agrees with experimental result very well. The metallic phase exhibits high spin (S=1) character, but it becomes S=1/2 in insulating phase. According to our analysis, the Mott-Hubbard and the charge-transfer induce the MIT together, and it supports the mechanism postulated by Tanaka (2002) [11].  相似文献   

10.
在超冷费米系统中实现人造规范势的突破,吸引了许多新问题的研究,展现了许多新奇的物理现象.本文研究了在环阱中,具有自旋轨道耦合和塞曼作用的两体相互作用费米模型.通过平面波展开的方法,解析求解了两体费米系统的本征能态.系统的总动量为守恒量,可以在不同总动量空间中研究能谱.研究发现:随着塞曼相互作用增大,在不同总动量空间,两体费米系统的本征能量均逐渐降低,系统基态从总动量为零空间转变到有限值空间.从吸引到排斥相互作用,无塞曼相互作用时,基态总动量始终为零,有塞曼相互作用时,基态总动量从零转变为有限值.通过单粒子和基态动量分布研究,本文直观地揭示了由塞曼能级劈裂引起的基态转变.  相似文献   

11.
Motivated by the recent discovery of superconductivity on the heterointerface LaAlO3/SrTiO3, we theoretically investigate the impurity-induced resonance states with coexisting spin singlet s- and triplet p-wave pairing symmetries by considering the influence of Rashba-type spin-orbit interaction (RSOI). Due to the nodal structure of the mixed gap function, we find single nonmagnetic impurity-induced resonance peaks appearing in the local density of state. We also analyze the evolutions of density of states and local density of states with the weight of triplet pairing component determined by the strength of RSOI, which will be widely observed in thin films of superconductors with surface or interface-induced RSOI, or various noncentrosymmetric superconductors in terms of point contact tunneling and scanning tunneling microscopy, and thus shed light on the admixture of the spin singlet and RSOI-induced triplet superconducting states.  相似文献   

12.
Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on.  相似文献   

13.
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.  相似文献   

14.
The electronic band structure of CeCoGe3 has been calculated using the self-consistent full potential nonorthogonal local orbital minimum basis scheme based on density functional theory. We investigated the electronic structure with the spin-orbit interaction and on-site Coulomb potential for the Ce-derived 4f orbitals to obtain the correct ground state of CeCoGe3. The exchange interaction between local f electrons and conduction electrons play an important role in their heavy fermion characters. The fully relativistic band structure scheme shows that spin-orbit coupling splits the 4f states into two manifolds, the 4f7/2 and the 4f5/2 multiplets.  相似文献   

15.
We study a generic model of interacting fermions in a finite-size disordered system. We show that the off-diagonal interaction matrix elements induce density of state fluctuations which generically favor a minimum spin ground state at large interaction amplitude, U. This effect competes with the exchange effect which favors large magnetization at large U, and it suppresses this exchange magnetization in a large parameter range. When off-diagonal fluctuations dominate, the model predicts a spin gap which is larger for odd-spin ground states as for even spin, suggesting a simple experimental signature of this off-diagonal effect in Coulomb blockade transport measurements.  相似文献   

16.
We investigate complex spin structures of frustrated two-dimensional Cr, Mn, and Fe monolayer magnets on a triangular lattice provided by the Cu(111) substrate. First we establish a zero-temperature phase diagram of possible spin structures on the basis of the classical Heisenberg model up to the third-nearest neighbor exchange interaction. Second we carried out first-principles total energy calculations on the basis of the vector-spin density formulation of the density functional theory using the full potential linearized augmented plane wave (FLAPW) method in film geometry for a set of complex non-collinear spin structures. We found, the ground state of Fe is ferromagnetic, Cr exhibits a coplanar, two-dimensional non-collinear 120 Néel state and Mn a three-dimensional non-collinear ground state, the 3Q-state. Incommensurate spin-spiral states are expected for a FeMn alloy on Cu(111). We employ the constrained local moment method to estimate the exchange parameters of the model Hamiltonians. We show that for Mn higher-order spin interactions are the origin of the 3Q-state for Mn. The combination of ab initio calculations and model Hamiltonians provides a powerful tool to investigate the magnetic structures of complex magnetic systems.  相似文献   

17.
The electronic band structure of YbRhSn has been calculated using the self-consistent full potential nonorthogonal local orbital minimum basis scheme based on the density functional theory. We investigated the electronic structure with the spin-orbit interaction and on-site Coulomb potential for the Yb-derived 4f orbitals to obtain the correct ground state of YbRhSn. The exchange interaction between local f electrons and conduction electrons play an important role in the heavy fermion characters of them. The fully relativistic band structure scheme shows that spin-orbit coupling splits the 4f states into two manifolds, the 4f7/2 and the 4f5/2 multiplet.  相似文献   

18.
We perform a theoretical investigation on the magnetism and orbital hybridization in ternary germanide Ce3Ni2Ge7 using the full-potential linearized augmented plane wave method (FP_LAPW) based on the density functional theory (DFT). The calculation with local spin density approximation (LSDA) predicts that there are two states for the Ce atoms due to the different environment: one (Ce1) is near the nonmagnetic state and the other (Ce2) is localized and magnetic. The orbital hybridization plays a key role in determining the state of Ce. On adding on-site Coulomb potential to the localized Ce2-4f orbit, the magnetic moment obtained from our calculation fits well with the experimental value.  相似文献   

19.
We consider a quantum dot attached to leads in the Coulomb blockade regime that has a spin 1 / 2 ground state. We show that, by applying an ESR field to the dot spin, the stationary current in the sequential tunneling regime exhibits a new resonance peak whose linewidth is determined by the single spin decoherence time T2. The Rabi oscillations of the dot spin are shown to induce coherent current oscillations from which T2 can be deduced in the time domain. We describe a spin inverter which can be used to pump current through a double dot via spin flips generated by ESR.  相似文献   

20.
An effective spin-orbit coupling can be generated in a cold atom system by engineering atom-light interactions. In this Letter we study spin-1/2 and spin-1 Bose-Einstein condensates with Rashba spin-orbit coupling, and find that the condensate wave function will develop nontrivial structures. From numerical simulation we have identified two different phases. In one phase the ground state is a single plane wave, and often we find the system splits into domains and an array of vortices plays the role of a domain wall. In this phase, time-reversal symmetry is broken. In the other phase the condensate wave function is a standing wave, and it forms a spin stripe. The transition between them is driven by interactions between bosons. We also provide an analytical understanding of these results and determine the transition point between the two phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号