首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycrystalline Mg0.6Cu0.4Fe2O4 ferrites have been prepared using solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and magnetic measurements.Using mean field theory and high-temperature series expansions (HTSE), extrapolated with the padé approximants method, the magnetic properties of Mg1−xCuxFe2O4 have been studied. The nearest neighbor super-exchange interactions for intra-site and inter-site of the Mg1−xCuxFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature Tc is calculated as a function of Mg concentration. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements.  相似文献   

2.
We report on the structural and magnetic properties of nanoparticles of MnxCo1−xFe2O4 (x=0.1, 0.5) ferrites produced by the glycothermal reaction. From the analysis of XRD spectra and TEM micrographs, particle sizes of the samples have been found to be about 8 nm (for x=0.1) and 13 nm (for x=0.5). The samples were characterized by DC magnetization in the temperature range 5-380 K and in magnetic fields of up to 40 kOe using a SQUID magnetometer. Mössbauer spectroscopy results show that the sample with higher Mn content has enhanced hyperfine fields after thermal annealing at 700 °C. There is a corresponding small reduction in hyperfine fields for the sample with lower Mn content. The variations of saturation magnetization, remnant magnetization and coercive fields as functions of temperature are also presented. Our results show evidence of superparamagnetic behaviour associated with the nanosized particles. Particle sizes appear to be critical in explaining the observed properties.  相似文献   

3.
The xZnO-(1−x)α-Fe2O3 nanoparticles system has been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 h. Structural and morphological characteristics of the zinc-doped hematite system were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. The Rietveld structure of the XRD spectra yielded the dependence of the particle size and lattice constant on the amount x of Zn substitutions and as function of the ball milling time. The x=0.1 XRD spectra are consistent with line broadening as Zn substitutes Fe in the hematite structure and the appearance of the zinc ferrite phase at milling times longer than 4 h. Similar results were obtained for x=0.3, while for x=0.5 the zinc ferrite phase occurred at 2 h and entirely dominated the spectrum at 24 h milling time. The Mössbauer spectra corresponding to x=0.1 exhibit line broadening as the ball milling time increases, in agreement with the model of local atomic environment. Because of this reason, the Mössbauer spectrum for 12 h of milling had to be fitted with two sextets. For x=0.3 and 12 milling hours, the Mössbauer spectrum reveals the occurrence of a quadrupole-split doublet, with the hyperfine parameters characteristic to zinc ferrite, ZnFe2O4. This doublet clearly dominates the Mössbauer spectrum for x=0.5 and 24 h of milling, demonstrating that the entire system of nanoparticles consists finally of zinc ferrite. As ZnO is not soluble in hematite in the bulk form, the present study clearly demonstrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthesis route allowed us to reach nanometric particle dimensions, which would make the materials very important for gas sensing applications.  相似文献   

4.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

5.
Using mean field theory and high-temperature series expansions (HTSEs), extrapolated with the Padé approximants method, the effect of Zn doping on magnetic properties of NiFe2O4 ferrite spinel has been studied. The nearest neighbour super-exchange interactions for intra-site (JAA, JBB) and inter-site (JAB) of the ZnxNi1−xFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The paramagnetic Curie-Weiss temperature θ and the Curie temperature TC are calculated as a function of Zn concentration. The critical exponent γ associated with magnetic susceptibility is calculated. The spin correlation functions intra-plane and inter-plane have been also computed and compared with exchange couplings. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements and Mössbauer spectroscopy.  相似文献   

6.
Zn0.4Cu0.6Fe1.2Cr0.8O4 has been studied by Mössbauer spectroscopy, SQUID magnetometry, and X-ray diffraction. The crystal is found to have a cubic spinel structure with the lattice constant The iron ions are in ferric states and occupy both the tetrahedral (A) and octahedral (B) sites; the fractions of the iron ions at the A-sites and B-sites are 0.52 and 0.34, respectively. While spin orderings are collinear at higher temperatures, spin canting begins to appear around 25 K and increases with decreasing temperature; the canting angle at 4.7 K reaches up to 27°. Debye temperatures of the tetrahedral and octahedral sites are determined to be 339 and 335 K, respectively.  相似文献   

7.
A series of mixed orthovanadates with nominal compositions La1−xFexVO4 were synthesized and characterized using powder X-ray diffraction, Mössbauer spectroscopy and temperature-programmed reduction techniques. The substitution resulted in the co-presence of two distinct mixed metal compositions having either monoclinic LaVO4 or a triclinic FeVO4 structure. Both these constituent phases were however, found to be of distorted nature, with no measurable change in respective crystal symmetry. Furthermore, the extent of this distortion depended upon the value of x and is attributed to the partial substitutions at A-site, i.e. with a part of La by Fe in LaVO4 lattice and a part of Fe by La in the FeVO4 phase. The substitution-induced lattice distortion is found to result in the lowering of the reduction temperature in case of both the above mentioned phases, and also in the synergistic enhancement in catalytic activity for a model CO oxidation reaction.  相似文献   

8.
The Bi2(FexGa1−x)4O9 oxide solid solution possessing a mullite-type structure has been investigated by 57Fe Mössbauer spectroscopy in dependence of composition (0.1≤x≤1) and temperature (293≤T/K≤1073). The spectra have been fitted with two doublets for tetrahedrally and octahedrally coordinated high-spin Fe3+ ions, respectively. The experimental areas of the subspectra were used to determine the distribution of iron on the two inequivalent structural sites. The fraction of iron cations occupying the octahedral site is found to increase with decreasing Fe content and the cation distribution is almost independent of temperature. The unusual temperature dependence of the quadrupolar splitting, QS, observed for the octahedral site with dQS/dT>0 is discussed in connexion with structural data for Bi2Fe4O9. The temperature dependence of Mössbauer isomer shifts and signal intensities is examined in the context of local vibrational properties of iron on the two inequivalent sites of the mullite-type lattice structure.  相似文献   

9.
The infrared (IR) and 57Fe-Mössbauer spectra of Fe3IIFe4III(AsO4)6 were recorded and analyzed on the basis of its structural characteristics. The IR spectrum presents a high complexity, showing an important number of bands and splittings, as a consequence of the presence of three structurally independent AsO43− groups. The analysis of the four quadrupole signals shown by the Mössbauer spectrum allowed to attain a detailed insight into the cation distribution over the available crystallographic sites. The alternating current susceptibility measurements indicate a paramagnetic to ferrimagnetic transition in the material at about 59 K.  相似文献   

10.
We have measured magnetization curves and powder neutron diffraction of double-layered Ruddlesden-Popper type ruthenate Sr3−xCaxRu2O7 (x=1.5, 2.0 and 3.0). The field dependence of the magnetization revealed that the transition field of metamagnetic transition along the b-axis shifted to lower fields and that the transition became broad with increasing Sr content. The slope of the magnetization curve also increased with increasing Sr content below the metamagnetic transition. These results indicate that an itinerant component is partly introduced by the Sr substitution. From the magnetic reflection, on cooling below TN, an additional reflection was observed at (0 0 1) for each x, and the amplitude increased with decreasing temperature. The observed diffraction patterns are very similar to those of Ca3Ru2O7. We conclude that the magnetic structure of the antiferromagnetic ordered phase is basically the same structure with that of Ca3Ru2O7.  相似文献   

11.
The magnetic properties of polycrystalline PrFe1−xNixO3 (x≤0.3) system were studied using Mössbauer spectroscopy and magnetization measurements. The Mossbauer spectra exhibit six line spectra which loses its sharpness as the Ni substitution increases within the system. As the Ni concentration in the system increases, the hyperfine field and isomer shift shows decrease, which is vivid from the sluggish nature of the sextets. The small value of quadrupole splitting confirms the octahedral environment of the Fe+3 ions. The magnetization curves show the reversible behavior and represent the fall in negative molecular field leading to AFM frustration. From these results, we conclude that sagging in the spectra reveals the change from antiferromagnetic state to ferromagnetic state, which can be attributed to mixed state of Fe+3 ions i.e. high spin (HS) and low spin (LS) which is a consequence of progressive collapse of Hund’s rule due to HS→LS transition. These results confirm the weak ferromagnetic component due to canted-AFM spin arrangement of Fe3+ magnetic moments.  相似文献   

12.
We studied by Mössbauer spectroscopy the Na0.82CoO2 compound using 1% 57Fe as a local probe which substitutes for the Co ions. Mössbauer spectra at T=300 K revealed two sites which correspond to Fe3+ and Fe4+. The existence of two distinct values of the quadrupole splitting instead of a continuous distribution should be related with the charge ordering of Co+3, Co+4 ions and ion ordering of Na(1) and Na(2). Below T=10 K part of the spectrum area, corresponding to Fe4+ and all of Fe3+, displays broad magnetically split spectra arising either from short-range magnetic correlations or from slow electronic spin relaxation.  相似文献   

13.
Phases of the composition Ca1−xyMgxCu2+yO3 have been prepared for the first time. The compounds are isostructural with the known end-members CaCu2O3 and MgCu2O3 showing a two-leg spin-ladder-like connection of copper and oxygen atoms within the Cu2O3-layer. Opposite the spin ladders this layer is folded, which results in a long-range antiferromagnetic ordering of these phases. The Néel temperature can be adapted by variation of x in Ca1−xyMgxCu2+yO3 between 24 and 80 K. Several structural features, which influence the magnetic ordering, are discussed.  相似文献   

14.
Structural and morphological characteristics of (1−x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD), transmission Mössbauer spectroscopy, scanning and transmission electron microscopy as well as energy dispersive X-ray analysis. On the basis of the Rietveld structure refinements of the XRD spectra at low tin concentrations, it was found that Sn4+ ions partially substitute for Fe3+ at the octahedral sites and also occupy the interstitial octahedral sites which are vacant in α-Fe2O3 corundum structure. A phase separation of α-Fe2O3 and SnO2 was observed for x≥0.4: the α-Fe2O3 structure containing tin decreases simultaneously with the increase of the SnO2 phase containing substitutional iron ions. The mean particle dimension decreases from 70 to 6 nm, as the molar fraction x increases up to x=1.0. The estimated solubility limits in the nanoparticle system (1−x)α-Fe2O3-xSnO2 synthesized under hydrothermal conditions are: x≤0.2 for Sn4+ in α-Fe2O3 and x≥0.7 for Fe3+ in SnO2.  相似文献   

15.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

16.
A series of samples ZnxFe3−xO4 have been prepared by the chemical coprecipitation technique and characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). XRD demonstrates all the samples of ZnxFe3−xO4 have a spinel structure same as Fe3O4. The magnetic hysteresis loops of ZnxFe3−xO4 obtained from VSM indicate that the saturation magnetization has a maximum when x is ∼1/3. The chemical states of Fe atoms and Zn atoms in zinc ferrites have been measured using XPS and Auger electron spectroscopy (AES). The Fe 2p core-level XPS spectra and Zn L3M45M45 Auger peaks have been analyzed and the results have been discussed in correlation with the samples’ magnetic properties. These results suggest most of Zn atoms occupy the tetrahedral sites and a small amount of them occupy the octahedral sites.  相似文献   

17.
ZnFe2O4 was prepared by a soft mechanochemical route from two starting combinations of powders: (1) Zn(OH)2/α-Fe2O3 and (2) Zn(OH)2/Fe(OH)3 mixed in a planetary ball mill. The mechanochemical treatment provoked reaction leading to the formation of the ZnFe2O4 spinel phase that was monitored by XRD, TEM, IR and Raman spectroscopy. The spinel phase was first observed after 4 h of milling and its formation was completed after 18 h in both the cases of starting precursors. The synthesized ZnFe2O4 has a nanocrystalline structure with a crystallite size of about 20.3 and 17.6 nm, for the cases (1) and (2), respectively. In the far-infrared reflectivity spectra are seen four active modes. Raman spectra suggest an existence of mixed spinel structure in the obtained nanosamples. In order to confirm phase formation and cation arrangement, Mössbauer measurements were done. Estimated degree of inversion is about 0.58 for both starting mixtures. The magnetic properties of the prepared ZnFe2O4 powders were also studied. The results show that the samples have a typical superparamagnetic-like behavior at room temperature. Higher values of magnetization in the case of samples obtained with starting mixture (2) suggest somewhat higher degree of cation inversion.  相似文献   

18.
19.
Using first-principles density functional theory within the generalized gradient approximation method, the effect of Zn doping on electronic and magnetic properties of NiFe2O4 ferrite spinel has been studied. The crystal structure of the compounds is assigned to a pseudocubic structure and the lattice constant increases as the Zn concentration increases. Our spin-polarized calculations give a half-metallic state for NiFe2O4 and a normal metal state for ZnxNi1−xFe2O4 (0<x≤0.5). Based on the magnetic properties calculations, it is found that the saturation magnetic moment enhances linearly with increase in the Zn content in NiFe2O4. The Zn doping in NiFe2O4 also induces strong ferrimagnetism since it decreases the magnetic moment of A-sites.  相似文献   

20.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号