首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We aim to explore the role that conduction band tail states play in shaping the optical response of hydrogenated amorphous silicon. We do so within the framework of an empirical model for the valence band and conduction band density of states functions, one that considers valence band band, valence band tail, conduction band band, and conduction band tail states. We examine the sensitivity of the joint density of states function to variations in the conduction band tail breadth, all other parameters being held fixed at their nominal hydrogenated amorphous silicon values. We find that when the conduction band tail is narrower than the valence band tail, its role in shaping the corresponding spectral dependence of the joint density of states function is relatively minor. This justifies the use of a simplified empirical model for the density of states functions that neglects the presence of the conduction band tail states in the characterization of the optical response of this material. Experimental data corresponding to hydrogenated amorphous silicon, demonstrating that the conduction band tail breadth is always less than the valence band tail breadth for this material, is then presented. Finally, fundamental reasons for the observed asymmetry in the band tail breadths are reviewed.  相似文献   

2.
S.C. Agarwal 《哲学杂志》2013,93(15):1642-1660
An attempt is made to highlight the importance of inhomogeneities in hydrogenated amorphous silicon (a-Si:H), in controlling its electronic properties. We note that hydrogen increases the gap in a-Si:H and that hydrogen is distributed inhomogeneously in it. This gives rise to long-range potential fluctuations, which are mostly uncorrelated and usually ignored. These and other such considerations have not only enabled us to gain new insights into the behaviour of a-Si:H in general, but have also allowed us to resolve several unsolved puzzles. Among these are questions like why undoped a-Si:H is n-type, why the creation of dangling bonds upon light soaking (LS) so inefficient, why a-Si:H degrades more upon LS when it is doped, why the reciprocity fails for light-induced degradation, why presence of nanocrystalline silicon improves stability and so on. We provide evidence to support some of our ideas and make suggestions for verifying the others.  相似文献   

3.
雷青松  吴志猛  耿新华  赵颖  奚建平 《中国物理》2005,14(11):2342-2347
Hydrogenated microcrystalline and amorphous silicon thin films were prepared by very high frequency plasmaenhanced chemical vapour deposition (VHF PECVD) by using a mixture of silane and hydrogen as source gas. The influence of deposition parameters on the transition region of hydrogenated silicon films growth was investigated by varying the silane concentration (SC), plasma power (Pw), working pressure (P), and substrate temperature (Ts). Results suggest that SC and Ts are the most critical factors that affect the film structure transition from microcrystalline to amorphous phase. A narrow region in the range of SC and Ts, in which the rapid phase transition takes place, was identified. It was found that at lower P or higher Pw, the transition region is shifted to larger SC. In addition, the dark conductivity and photoconductivity decrease with SC and show sharp changes in the transition region. It proposed that the transition process and the transition region are determined by the competition between the etching effect of atomic hydrogen and the growth of amorphous phase.  相似文献   

4.
Hydrogenated nanocrystalline silicon thin films were prepared by plasma enhanced vapor deposition technique. In our experiment, hydrogen dilution ratio RH was changed mainly, while the other parameters, such as the radio frequency power, the direct current bias value, the chamber pressure, the total gas flow and the substrate temperature were kept constant. The film's surface topography was gained by AFM. The chemical bond was confirmed by Fourier transform infrared spectra. The optical properties were characterized by transmission spectra. To consider absorption peak of stretching vibration mode of SiH3 at 2140 cm−1 and to reduce the calculation error, a hydrogen content calculation method was proposed. Effects of hydrogen dilution ratio on the deposition rate v and hydrogen content CH were investigated. The bonding mode and the force constants k of chemical bond, the structural factor f in films were changed by high hydrogen dilution ratio, which gave rise to the shift of absorption peak of infrared stretching mode and the decrease of optical band gap Eg.  相似文献   

5.
Photoluminescence and photoconductivity measurements were used to study the influence of Ho doping on the optical properties of InGaAsP layers grown by liquid phase epitaxy (LPE). The full width at half maximum (FWHM) of the photoluminescence peak was found to decrease as the amount of Ho increases. When the amount of Ho is 0.11 wt%, the FWHM has a minimum value of 7.93 meV, about 46% lower than that of the undoped InGaAsP. The absorption tails observed in the photoconductivity were analyzed with the Urbach tail model and the Urbach energies were obtained from the fits. The Urbach energy decreases as the amount of Ho increases, indicating that Ho doping greatly reduces the amount of residual impurities in LPE-grown layers.  相似文献   

6.
Electrical and physical parameters, which influence the photoluminescence (PL) properties of spark-processed silicon (sp-Si), were systematically varied in order to obtain optimal PL emission. Among these parameters are the average spark current, the pulse width of the spark events, the frequency of the pulses, the processing time, the electrode diameter, the distance between the electrodes, the spark-processing environment, and the gas ambient pressure. It was found that for optimal PL emission the processing current needs to be between 20 and 40 mA, and the pulse frequency of the sparks between 10 and 15 kHz. Further, the N2/O2 ratio of the processing environment needs to be about 7:3 and the ambient gas pressure and the processing time as large as feasible. The conditions that are favorable for green PL are a small pulse width, a small counter electrode diameter, a small gap between electrodes, a relatively large nitrogen concentration in the processing chamber, and a comparatively large spark frequency. In the opposite cases, a UV/blue PL is predominantly observed. The results are discussed in terms of various thermal effects on the resulting molecules or defects, which are believed to be important for the PL emission.  相似文献   

7.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

8.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

9.
Optical absorption and luminescence spectra of europium doped strontium borate glasses prepared in different conditions are studied. It is found that the percentage of Eu3+ ions varies from 100 to 30% being controlled by the conditions of preparation. The mechanism, favoring reduction of europium to Eu2+ state in polycrystalline strontium tetraborate, is much weaker in glasses of the same composition. In samples containing mixed valence europium at densities of 8×1020 cm−3, the efficient transfer of optical excitation from Eu3+ to Eu2+, suppressing the Eu3+ luminescence, has been found. The most reliable way of monitoring the percentage of europium ions in different valences for strontium borate glasses is the measuring of absorption at f-f transition 7F05D2 of Eu3+.  相似文献   

10.
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (∼445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry.  相似文献   

11.
nanostructures were synthesized by using different Bi sources via a simple solvothermal process, in which and BiCl3 were used as the Bi sources. Optical properties of nanostructures prepared with and BiCl3 as the Bi sources were investigated by micro-Raman spectroscopy. The Raman scattering spectrum of hexagonal nanoplates prepared by using as the Bi source shows that the infrared (IR) active mode A1u, which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is greatly activated and shows up clearly in the Raman scattering spectrum. We attribute the appearance of the infrared active A1u mode in the Raman spectrum to crystal symmetry breaking of hexagonal nanoplates. However, the Raman scattering spectrum of nanostructures with irregular shape prepared by using as the Bi source only exhibits the two characteristic Raman modes of crystals. Micro-Raman measurements on nanostructures with different morphologies offer us a potential way to tailor optical properties of nanostructures by controlling the morphologies of the nanostructures, which is very important for practical applications of nanostructures in thermoelectric devices.  相似文献   

12.
Spectroscopic ellipsometry measurements of CuInSe2 (CIS) and CuIn1−xGaxSe2 (CIGS) over a range of Cu compositions reveal that there are important differences in electronic and optical properties between α-phase CIS/CIGS and Cu-poor CIS/CIGS. We find a reduction in the imaginary part of the dielectric function ?2 in the spectral region, 1-3 eV. This reduction can be explained in terms of the Cu-3d density of states. An increase in band gap is found for Cu-poor CIS and CIGS due to the reduction in repulsive interaction between Cu-3d and Se-4p states. We also characterize the dielectric functions of polycrystalline thin-film α-phase CuIn1−xGaxSe2 (x=0.18 and 0.36) to determine their optical properties and compare them with similar compositions of bulk polycrystalline CuIn1−xGaxSe2. The experimental results have important implications for understanding the functioning of polycrystalline optoelectronic devices.  相似文献   

13.
An investigation on the structural stabilities, electronic and optical properties of LiBeP under high pressure was conducted using the all-electron density functional theory within the local density approximation. Our results show that the sequence of the pressure induced phase transition of LiBeP is the Cu2Sb-type structure (P4/nmm), the MgSrSi-type structure (Pnma) and the LiGaGe-type structure (P63mc). The first transition (P4/nmm to Pnma) takes place at 2.95 GPa and the second (Pnma to P63mc) at 6.65 GPa. In the three phases, the bandgap is indirect and the valence band maximum is at the zone center. With increasing pressure LiBeP in the LiGaGe structure becomes a direct gap semiconductor at 19.75 GPa. The assignments of the structures in the optical spectra and the band structure transitions are discussed. The mean value of the optical dielectric constant for the Cu2Sb phase is smaller than that for the MgSrSi and the LiGaGe ones. This compound has a positive uniaxial anisotropy in the LiGaGe structure. The absorption coefficient along the z   direction, αzzαzz, for the MgSrSi structure is higher than that in the other two structures in the visible regime.  相似文献   

14.
CdP2 nanoclusters were fabricated by incorporation into pores of zeolite Na–X and by laser ablation. Absorption and photoluminescence (PL) spectra of CdP2 nanoclusters in zeolite were measured at the temperatures of 4.2, 77 and 293 K. Both absorption and PL spectra consist of two bands blue shifted with respect to bulk crystal. We performed the calculations aimed to find the most stable clusters in the size region up to size of the zeolite Na–X supercage. The most stable clusters are (CdP2)6 and (CdP2)8 with binding energies of 9.30 and 10.10 eV per (CdP2)1 formula unit, respectively. Therefore, we attributed two bands observed in absorption and PL spectra to these stable clusters. The Raman spectrum of CdP2 clusters in zeolite was explained to be originated from (CdP2)6 and (CdP2)8 clusters as well. The PL spectrum of CdP2 clusters produced by laser ablation consists of the asymmetric band with low-energy tail that has been attributed to emission of both (CdP2)8 cluster and CdP2 microcrystals.  相似文献   

15.
We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.  相似文献   

16.
Structural and optical properties of the Tb doped ZnO nanoparticles are systematically studied as a function of the Tb mole-fraction. Our study suggests that the Tb incorporates mostly on the surface and affects the optical properties of the ZnO nanoparticles by influencing the attachment of certain adsorbed groups, which are found to be responsible for the appearance of a broad green luminescence (GL) band in the photoluminescence spectra recorded for these nanoparticles. It has been found that the accumulation of Tb on the surface of the nanoparticles not only enhances the band edge to green luminescence intensity ratio under the vacuum condition but also increases the band gap energy by introducing a hydrostatic compressive strain in individual nanoparticles, which provides a unique opportunity to study the pressure dependence of the optical properties of nanoparticles without applying any external pressure. The hydrostatic compressive strain is explained in terms of the increase of the surface strain energy as a result of the Tb accumulation on the surface of the nanoparticles. The average value of the surface energy density for the particles has been estimated as a function of Tb mole-fraction. The pressure coefficient of the band gap which is obtained from the variation of the band gap energy with the hydrostatic strain has been found to decrease significantly with the particle size for the ZnO nanoparticles.  相似文献   

17.
First principles calculations, by means of the full-potential linearized augmented plane wave method within the local density approximation, were carried out for the effect of pressure on the electronic and optical properties of the filled tetrahedral compounds LiMgN, LiMgP and LiMgAs. The bandgap pressure coefficient trend in the ternaries is found to be similar to the one encountered in the zinc-blende-like AlX. The first order bandgap pressure coefficient aΓ-Γ in LiMgN is larger than the corresponding one in AlN, while it is smaller in LiMgP and LiMgAs compared to the one in AlP and AlAs. The predicted values of the dielectric constants for LiMgN, LiMgP and LiMgAs are close to those of the binary compounds AlN, AlP and AlAs.  相似文献   

18.
We present first principles calculations of the effect of pressure on the electronic and optical properties of the alkali antimonides semiconductors K3Sb, K2CsSb, KCs2Sb and Cs3Sb by means of the full-potential linearized augmented plane wave method within the generalized gradient approximation. The band gap variation is not linear. The crossover pressure values are determined for K3Sb and K2CsSb. Under pressure the structures in the optical spectra shift towards higher energies for K3Sb and KCs2Sb whereas the threshold energy is lowered for K2CsSb and Cs3Sb. The electronic dielectric constant decreases with pressure for K3Sb while it increases for the other three compounds. Our results indicate that the absorption becomes strong in the UV region for KCs2Sb and Cs3Sb.  相似文献   

19.
Amorphous silicon (a-Si) films were prepared by sputtering method with polycrystalline and monocrystalline silicon targets. Structural, optical and electrical properties of the a-Si films have been systematically studied. The deposition power is from 100 to 200 W. Compared with the a-Si films deposited by using monocrystalline silicon target, the a-Si films prepared with polycrystalline silicon target exhibit better growth property, similar optical band gap, and own the highest mobility of 1.658 cm2/Vs, which make a good match with the optimal window of optical band gap for a-Si solar cells. The results indicated that the polycrystalline silicon target is superior to the monocrystalline silicon target when used to prepare a-Si films as the intrinsic layer in a-Si solar cells.  相似文献   

20.
A series of sodium borophosphate glasses of the composition (1−x)NaPO3xB2O3 have been synthesised from Na2CO3, B2O3 and P2O5 and their optical and thermal properties investigated. The results show that refractive index (n) and glass transition temperature (Tg) show a maximum at about B/(B+P)=0.6 while thermal expansion coefficient (α) and thermo-optic coefficient (dn/dT) change monotonically with the B/(B+P) ratio. These observations can be interpreted based on the incorporation of BO3 and BO4 units into the glass structural network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号