首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Characteristics of thermionic electron emission during femtosecond laser ablation of gold film are studied numerically. For the rigorous calculation of electron and lattice temperatures, an enhanced two-temperature model with transient thermal and optical properties is developed and it is demonstrated that the model predicts the damage threshold fluences closely matching experimental data. From the calculated electron emission characteristics, quantum efficiency and electron current density are estimated.  相似文献   

2.
We theoretically investigated different thermal relaxation participating in the ultrafast thermionic emission processes on gold film surface with a femtosecond pulse excitation. The thermionic emission regimes under the two temperature relaxation and the thermal diffusion relaxation were demonstrated. The simulations showed that the thermionic emission properties can be defined in the regime under two temperature relaxation by reducing the laser fluence, or widening the pulse duration or increasing the laser wavelength. It was also found that there exists a transition between the two distinct thermionic emission regimes under peculiar laser parameters of laser fluence, pulse duration and laser wavelength. The results were explained as significant intervene of laser irradiation parameters into gold film thermal relaxation processes.  相似文献   

3.
对Ti/6H-SiC Schottky结的反向特性进行了测试和理论分析,提出了一种综合的包括SiC Schottky结主要反向漏电流产生机理的反向隧穿电流模型,该模型考虑了Schottky势垒不均匀性、Ti/SiC界面层电压降和镜像力对SiC Schottky结反向特性的影响,模拟结果和测量值的相符说明了以上所考虑因素是引起SiC Schottky结反向漏电流高于常规计算值的主要原因.分析结果表明在一般工作条件下SiC Schottky结的反向特性主要是由场发射和热电子场发射电流决定的.  相似文献   

4.
We present a simulation study of the charging of a dust grain immersed in a plasma, considering the effect of thermionic electron emission from the grain. It is shown that the orbit motion limited theory is no longer reliable when electron emission becomes large: screening can no longer be treated within the Debye-Huckel approach and an attractive potential well can form, leading to the possibility of attractive forces on other grains with the same polarity. We suggest to perform laboratory experiments where emitting dust grains could be used to create nonconventional dust crystals or macromolecules.  相似文献   

5.
The thermionic emission of the single-layer gold thin film and the two-layer film was assembled by gold padded with other metals (Ag, Cu, and Ni) and irradiated by the femtosecond laser pulse. Additionally, the emission was simulated by a two-temperature model combined with the Richardson–Dushman equation. It was found that the two-layer metal structure can change the electron temperature of the gold surface and control the thermionic emission compared with the single-layer gold film. With the same laser fluence, the two-layer film structure may shorten the duration of thermionic emission, and the duration of the thermionic emission can be further optimized by changing the proportion of thin film thickness with gold layer in the two-layer structure. The result can be especially beneficial in the context of ultrafast electron emission induced by femtosecond laser.  相似文献   

6.
Light-emitting diodes (LEDs), based on blue-emitting polyfluorenes are usually prone to the appearance of a contaminant green emission (centered around 520 nm), leading to an apparent whitish light emission. We find that, for LEDs based on poly(9,9-dioctylfluorene), PFO, the blending with the hole transporting polyvinylcarbazole, PVK, can suppress such green emission. LEDs based on a PFO/PVK blend with a 1:2 weight ratio and with aluminum cathodes show a quite stable blue emission. This result reveals the important role played by the interchain interactions on the observed contaminant green emission. In addition, we observe that in Al-based devices blending causes a decrease in EL efficiency while in Mg-based devices we obtained higher efficiencies with the blend PFO:3PVK when compared with neat PFO-based devices.  相似文献   

7.
Fabrication and characterization of C60/tetrathiafulvalene solar cells was carried out. Photovoltaic properties of bulk-hetero and heterojunciotn solar cells were investigated by light-induced current vs. voltage curves and optical absorption. Transmission electron microscopy (TEM) image, X-ray and electron diffraction showed that the bulk-heterojunction film had the microstructure of C60 crystal structure with TTF phase. Heat treatment of the heterojunction film with tetraethylsilane improved the photovoltaic performance, yielding a slight increase of conversion efficiency. This result would be originated in improvement of microstructure around inner interface between the both crystal phases. Mechanisms of the photovoltaic properties were discussed on the basis of the experimental results.  相似文献   

8.
Ni–Si Schottky barriers are fabricated by electrodeposition using n on n+ Si substrates. IV, CV and low temperature IV measurements are presented. A high-quality Schottky barrier with extremely low reverse leakage current is revealed. The results are shown to fit an inhomogeneous barrier model for thermionic emission over a Schottky barrier proposed by Werner and Guttler [J.H. Werner, H.H. Guttler, Barrier inhomogeneities at Schottky contacts, J. Appl. Phys. 69 (3) (1991) 1522–1533]. A mean value of 0.76 V and a standard deviation of 66 mV is obtained for the Schottky barrier height at room temperature with a linear bias dependence. X-ray diffraction and scanning electron microscopy measurements reveal a polycrystalline Ni film with grains that span from the Ni–Si interface to the top of the Ni layer. The variation in Ni orientation is suggested as a possible source of the spatial distribution of the Schottky barrier height.  相似文献   

9.
We suggest a general approach to considering the thermionic, field, and thermionic field emissions of electrons from metals. For this purpose, based on the standard model of free electrons in a metal, we suggest a numerical method for determining the transmission coefficient through the potential barrier at the metal-vacuum interface suitable for an arbitrary barrier. This method is free both from the approximations based on the saddle-point approximation and characteristic of the analytical models for thermionic emission and from the approximations for the tunneling coefficient through the potential barrier characteristic of the models for field emission. Based on numerical simulations, we determine the thermal effect of the emission and ascertain that a very sharp transition from surface cooling by electron emission to heating occurs at certain electric field and temperature. We explain the triggering mechanism of the explosive electron emission observed during micropoint explosions by this phenomenon. The explosive emission is shown to begin when the level of the potential barrier at the micropoint tip drops below the Fermi level in the metal.  相似文献   

10.
A high-fidelity numerical model for investigations of the ultrafast heating is highly desirable for simulating the pulsed laser damage and the ultrafast electron emission characteristics. However, realization of accurate predictions of thermal dynamics and thermionic electron emission remains challenging due to the high non-equilibrium state, in which the equilibrium heating parameters are invalid. Here, we report an axisymmetric two-dimensional (2-D) high-fidelity numerical model for predictions of the thermionic emission with respect to the temperature-dependent dynamics parameters. The spatio-temporal temperature evolution dynamics and the thermionic emission rate characteristics on Au film target are demonstrated, whose credibility is approved by the Au film ablation threshold experiments.  相似文献   

11.
The electrical transport properties of InN/GaN heterostructure based Schottky junctions were studied over a wide temperature range of 200-500 K. The barrier height and the ideality factor were calculated from current-voltage (I-V) characteristics based on thermionic emission (TE), and found to be temperature dependent. The barrier height was found to increase and the ideality factor to decrease with increasing temperature. The observed temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. Such inhomogeneous behavior was modeled by assuming the existence of a Gaussian distribution of barrier heights at the heterostructure interface.  相似文献   

12.
Positively charged sodium clusters can be easily ionized by a fs laser pulse of relatively low intensity (<1010 W/cm2), if the laser is in resonance with the plasmon excitation of the cluster. This ionization process was investigated in detail by measuring the kinetic energy distribution of electrons emitted from a size-selected Na93 + as a function of the fs laser intensity. In all cases pure Boltzmann-like energy distributions were observed. A comparison with statistical theory shows that the emission is a purely thermal process. It is different to normal thermionic emission insofar as the electrons are emitted from a hot electron system which is only weakly coupled to a cold ionic background. The results demonstrate purely statistical behaviour of a small fermionic system even for very high excitation energy. Received: 25 May 2000 / Accepted: 6 November 2000 / Published online: 9 February 2001  相似文献   

13.
Scattering mechanisms of charge carriers in Transparent Conducting Oxide (TCO) films have been analyzed theoretically. For the degenerate polycrystalline TCO films with relatively large crystallite sizes and high carrier concentrations (higher than 5 × 1018 cm–3), the depletion layers between crystallites are very thin compared to the crystallite sizes, and the grain boundary scattering on electrical carriers makes a small contribution to limit the mobility of the films. Instead of thermionic emission current, a tunneling current dominates the electron transport over grain boundaries. The Petritz model which is based on thermionic emission and extensively quoted in literature should not be applicable. The main scattering mechanisms for the TCO films are ionized impurity scattering in the low-temperature range and lattice vibration scattering in the high-temperature range. The ionized impurity scattering mobility is independent of temperature and the mobility due to thermal lattice vibration scattering is inversely proportional to the temperature. The results obtained from Hall measurements on our ZnO, ITO, SnO2 and SnO2:F films prepared with various methods supports the analysis.  相似文献   

14.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

15.
The physical properties of the etched CdTe surfaces obtained during the process of formation of a p+ region on CdTe surface films using (i) a nitric/phosphoric acid mixture and (ii) a chemical Te-deposition method involving thermal annealing have been compared in this study. This study suggests the chemical-deposition method as an alternative to the chemical-etching methods for use in back-contact technology to increase the efficiency of CdTe solar cells.  相似文献   

16.
彭凯  刘大刚 《物理学报》2012,61(12):121301-121301
研究了场致发射与热电子发射的基本理论, 得出热场致发射的适用公式, 探讨了其粒子的初始分布和初始动量, 并在FDTD-PIC原理的基础上编写了软件, 分别实现了场致发射模型, 热电子发射模型和热场致发射模型, 通过分别对一个长楔形阴极器件的数值模拟, 从发射电流特性, 电子初始能量分布等方面验证了其正确性.  相似文献   

17.
2D planar field emission devices based on individual ZnO nanowires were achieved on Si/SiO2 substrate via a standard e-beam lithography method. The anode, cathode and ZnO nanowires were on the same substrate; so the electron field emission is changed to 2D. Using e-beam lithography, the emitter (cathode) to anode distance could be precisely controlled. Real time, in situ observation of the planar field emission was realized in a scanning electron microscope. For individual ZnO nanowires, an onset voltage of 200 V was obtained at 1 nA. This innovative approach provides a viable and practical methodology to directly implement into the integrated field emission electrical devices for achieving “on-chip” fabrication.  相似文献   

18.
Multi-walled carbon nanotube (MWCNT)-supported tungsten trioxide (WO3) composite catalysts were prepared by liquid-phase process. WO3 nanoparticles grew on the inner and outer surface of MWCNTs. Their photocatalytic activities in the degradation of the Rhodamine B Dye were studied. The effects of mass ratio of MWCNTs to WO3 were discussed. X-ray diffraction, field emission transmission electron microscopy, thermogravimetric-differential thermal analysis and ultraviolet-visible light absorption spectra were carried out to characterize the composite catalysts. The results indicated that the optimum mass ratio of MWCNTs to WO3 is 5:100.  相似文献   

19.
Schottky barriers formed between ferromagnetic metal and Semiconductor are of particular interest for spin injection and detection experiments. Here, we investigate electrical spin polarized carrier injection and extraction in Si using a Co/Si/Ni vertical structure built on a 250 nm thick Si membrane. Current–voltage measurements performed on the devices at low temperatures showed evidence of the conduction being dominated by thermionic field emission, which is believed to be the key to spin injection using Schottky junctions. This, however, proved inconclusive as our devices did not show any magnetoresistance signal even at low temperatures. We attribute this partially to the high resistance-area product in our Schottky contacts at spin injection biases. We show the potential of this vertical spin-device for future experiments by numerical simulation. The results reveal that by growing a thin highly doped Ge layer at the Schottky junctions the resistance-area products could be tuned to obtain high magnetoresistance.  相似文献   

20.
The interaction between high-power ultrashort laser pulses and the semiconductor surface is considered with allowance for the effect of thermionic emission on the temperature dynamics of the electron and ion subsystems in a semiconductor medium. The parameters of the pulses for which thermionic emission must be taken into account are determined. A computational scheme that makes it possible to solve the problem in the three-dimensional formulation is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号