首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin excitations in granular structures with ferromagnetic nanoparticles   总被引:1,自引:0,他引:1  
Spin excitations and relaxation in a granular structure which contains metallic ferromagnetic nanoparticles in an insulating amorphous matrix are studied in the framework of the s-d exchange model. As the d system, we consider the granule spins, and the s system is represented by localized electrons in the amorphous matrix. In the one-loop approximation with respect to the s-d exchange interaction for a diagram expansion of the spin Green’s function, the spin excitation spectrum is found, which consists of spin-wave excitations in the granules and of polarized spin excitations. In polarized spin excitations, a change in the granule spin direction is accompanied by an electron transition with a spin flip between two sublevels of a split localized state in the matrix. We considered polarized spin relaxation (relaxation of the granule spins occurring by means of polarized spin excitations) determined by localized deep energy states in the matrix and the thermally activated electronic cloud of the granule. It is found that polarized spin relaxation is efficient over a wide frequency range. Estimates made for structures with cobalt granules showed that this relaxation could be observed in centimetric, millimetric, and submillimetric wavelength ranges.  相似文献   

2.
Electron energy loss spectra of a Pd(110) clean surface have been measured at primary energies of 40–100 eV. The observed peaks are at the loss energies of ∼ 3, 4.3, 7.5, 11.5, 16, 21.3, 26.5 and 33.8 eV. The 7.5, 26.5, and 33.8 eV peaks are attributed mainly to the bulk plasmon excitations associated with 5s electrons, coupled 5s and a limited number of 4d electrons, and total (4d+5s) electrons, respectively. The rest of the peaks are ascribed mainly to one-electron excitations.  相似文献   

3.
We study the groundstates of rotating atomic Bose gases with non-local interactions. We focus on the weak-interaction limit of a model involving s- and d-wave interactions. With increasing d-wave interaction, the mean-field groundstate undergoes a series of transitions between vortex lattices of different symmetries (triangular, square, “stripe” and “bubble” crystal phases). We discuss the stability of these phases to quantum fluctuations. Using exact diagonalization studies, we show that with increasing d-wave interaction, the incompressible Laughlin state at filling factor ν=1/2 is replaced by compressible stripe and bubble states.  相似文献   

4.
Electron energy-loss spectroscopy of ~ 200 eV electrons has been applied to the study of the electronic states of clean NiO (100) surfaces. Initial attempt has been made on the identification of observed peaks, and they are attributed to the one-electronic transitions (O2-2p → Ni2+3d, 4s and 4p; Ni2+3d → 4p, 3p → 3d and 4s), and the collective excitations (bulk plasmons of O2-2p, Ni2+3d electrons, and coupled 2p and 3d electrons).  相似文献   

5.
We give an overview on our experimental and theoretical investigations of Brillouin light scattering in magnetic thin films, layered magnetic structures and superlattices. For epitaxial Fe(1 10) layers on W(1 10) the in-plane and out-of-plane magnetic surface anisotropy constants are determined, and the influence of Pd overlayers on the surface anisotropies is studied. For Fe/Pd superlattices a magnetic polarization of the Pd at the interfaces is established and the interface anisotropy constant is determined. For second order Fe/Pd superlattices, formed by alternating two Fe/Pd bilayers with different repeat periods, the Brillouin spectrum is obtained and compared to calculations. In the case of magnetic/nonmagnetic multilayered structures we investigate theoretically the crossing regime between dipolar and exchange-dominated modes. For small spacer-layer thicknesses, interlayer exchange coupling shifts the spin-wave frequencies of all but the highest-frequency dipolar mode into the exchange-mode regime. In case of all-magnetic multilayered structures, such as Fe/Ni multilayers, a new type of propagating collective excitations arising from coupled exchange modes is predicted.  相似文献   

6.
We present a theory to study the temperature-dependent behavior of surface magnetization in a ferromagnetic semi-infinite crystal. Our approach is based on the single-site approximation for the s-f model. The effect of the semi-infinite nature of the crystal is taken into account by a localized perturbation method. Using the mean-field theory for the layer-dependent magnetization, the local density of states and the electron-spin polarization are investigated at different temperatures for ordinary and surface transition cases. The results show that the surface magnetic properties may differ strongly from those in the bulk and the coupling constant of atoms plays a decisive role in the degree of spin polarization. In particular, for the case in which the exchange coupling constant on the surface and between atoms in the first and second layer is higher than the corresponding in the bulk, an enhancement of surface Curie temperature and hence the spin polarization can be obtained.  相似文献   

7.
The Hamiltonian of the magnetic superlattice with three-layer unit cell was treated within the Boson formalism. The Boson Green’s functions (BGFs) were derived and it was shown that the system for BGFs splits into two sets which lead to the energies with opposite signs, although the energies of elementary excitations are strictly only the positive ones. However, when corresponding energies are used, the correlation functions calculated from both sets are the same. All the physically relevant quantities: total energy of the system, ground state energy, layer magnetization and zero-point (quantum) fluctuations are derived analytically by using both sets, showing that they lead to the same expressions. The Hamiltonian was also diagonalized by the so-called “u-v” transformation of the operators. It is shown that in spite of formal independence of the approaches, there exists a close relationship between BGF and “u-v” transformations.  相似文献   

8.
The magnetoresistances of aluminum-doped zinc oxide thin films with thickness of 463.63, 203.03, and 66.85 nm were measured at low temperatures from 2.5 to 30 K. It is found that the samples exhibit negative magnetoresistance at all measuring temperatures. However, neither the three-dimensional nor the two-dimensional weak-localization theories can reproduce the behavior of the magnetoresistance. We find that the magnetoresistance of the three films can be well described by a semiempirical expression that takes into account the third order s-d exchange Hamiltonians describing a negative part and a two-band model for the positive contribution. This strongly suggests that the negative magnetoresistance in ZnO:Al film originates from the scattering of conduction electrons due to localized magnetic moments.  相似文献   

9.
A novel formalism (the effective surface potential method) is developed for calculating surface states. Like the Green function method of Kalkstein and Soven and the transfer matrix method of Falicov and Yndurain, the technique is exact for simple tight binding Hamiltonians. As well as offering an alternative viewpoint, the present method provides a simple analytic expression describing the surface states. At each point ks in the surface Brillouin zone the semi-infinite solid is viewed as an effective linear chain where each element of the chain is a planar layer. The solution to the linear chain problem can be expressed in terms of an effective potential h(ks,E) at each energy E. A number of examples are presented in detail; “spd” Hamiltonians for a linear chain (d = 1), the honeycomb lattice (d = 2), the 111 surface of silicon (d = 3), and a dissected Bethe lattice. Various exact results are given, e.g. the extremities of surface state bands and the surface density of states of p-like (delta function) bands. The results of Kalkstein and Soven for the 100 surface of a simple cubic solid with a perturbation on the surface layer are rederived.  相似文献   

10.
11.
Amorphous hydrogenated silicon (a-Si:H) with high hydrogen content (10-40 at.%), and non-stehiometric silicon-carbon (Si1−xCx) thin films with a variation of the carbon to silicon ratio up to 0.3, were deposited by using a magnetron sputtering source. The Si1−xCx thin films were partially crystallised after deposition by thermal annealing up to 1050 °C.The GISAXS (Grazing Incidence Small Angle X-ray Scattering) spectra of all of the prepared specimens indicate the presence of “particles” in the “bulk” of the films. For the a-Si:H samples, “particles” are most probably voids agglomerates with a variation in size between 3 and 6 nm. The mean value of the size distribution of the “particles” increases while its width slightly decreases with the hydrogen content in the film. This indicates a better structural ordering which is consistent with the results of Raman spectroscopy that show a decrease of the ratio between intensities of transversal acoustic (TA) and transversal optic (TO) phonon peaks, ITA/ITO, and a narrowing of the TO peak with increasing hydrogen content. These results are discussed as a consequence of the beneficial influence of hydrogen bombardment during the film growth.For Si1−xCx thin films, the “particles” are assumed to be SiC nano-crystals with a size between 2 and 14 nm and they are larger in films with a higher carbon concentration. Inside each of the films, the crystals are larger closer to surface and they grow faster in the direction parallel to the surface than in that which is perpendicular to it.  相似文献   

12.
The atomic structure and charge transfer on the Ge (1 0 5) surface formed on Si substrates are studied using scanning tunneling microscopy and spectroscopy (STM and STS). The bias-dependent STM images of the whole Ge (1 0 5) facets formed on a Ge “hut” structure on Si (0 0 1) are observed, which are well explained by the recently confirmed structure model. The local surface density of states on the Ge (1 0 5) surface is measured by STS. The localization of the electronic states expected from charge transfer mechanism is observed in the dI/dV spectra. The surface band gap is estimated as 0.8-0.9 eV, which is even wider than the bulk bandgap of Ge, indicating the strong charge transfer effect to make the dangling bonds stable. The shape of normalized tunnel conductance agrees with the theoretical band structure published recently by Hashimoto et al.  相似文献   

13.
《Surface science》1988,200(2-3):446-453
General dispersion equations for the magnetostatic modes in infinite and semi-infinite superlattices are derived by the transfer matrix method for the case of superlattices with an elementary unit consisting of N (N arbitrary) ferromagnetic layers. The films are assumed to be magnetized parallel to the film surfaces and parallel to an external magnetic field. Explicit forms of the dispersion equations, together with exemplary dispersion curves of surface modes and bands of bulk waves, are given in the case of N = 2.  相似文献   

14.
We propose that cuprate superconductors are in the vicinity of a spontaneous d-wave type Fermi surface symmetry breaking, often called a d-wave Pomeranchuk instability. This idea is explored by means of a comprehensive study of magnetic excitations within the slave-boson mean-field theory of the t-J model. We can naturally understand the pronounced xy anisotropy of magnetic excitations in untwinned YBa2Cu3Oy and the sizable change of incommensurability of magnetic excitations at the transition temperature to the low-temperature tetragonal lattice structure in La2-xBaxCuO4. In addition, the present theoretical framework allows the understanding of the similarities and differences of magnetic excitations in Y-based and La-based cuprates.  相似文献   

15.
First-principle calculations based on density functional theory have been performed on the nonmagnetic 2p light element C-doped ZnO thin films. The total energies and magnetism of the system are calculated with a ten-layer slab along () direction. The results show that the C-doped ZnO thin films are ferromagnetic. A single C is preferable to occupy the subsurface site. As the concentration of C atoms increases, the ferromagnetic coupling among the dopants is more favorable, and they tend to form a cluster around the Zn atom at the film surface. The ferromagnetism is predicted to be mainly from a p-d exchange-like p-p coupling interaction and a p-d exchange hybridization. The p-p coupling interaction is the dominative mechanism.  相似文献   

16.
The magnetic excitation spectrum of degenerate ferromagnetic semiconductors, described by the s-f interaction model, is investigated by calculating various Green functions which provide the dynamic response of the system. In addition to the usual acoustic spin-wave mode, there are also an optical spin-wave branch and the Stoner-like continuum of excitations. Some estimates are made for the first order light scattering from ferrmagnetic semiconductors at low temperatures T?Tc.  相似文献   

17.
One and two mode behaviors of surface phonon-polaritons of ternary mixed crystal (TMC) films are studied in the framework of the modified random-element-isodisplacement model and the Born-Huang approximation, based on the Maxwell's equations with the usual boundary conditions. The numerical results for the frequencies and splitting energies of the surface phonon-polaritons as functions of the composition in several II-VI and III-V compound semiconductor ternary mixed crystal films are obtained. The “two-mode” and “one-mode” behaviors for different types of systems are clearly shown in the curves of the splitting energies of surface phonon-polaritons. The theoretical conclusion obtained is agreement with the reported experiment results for bulk TMC systems.  相似文献   

18.
We derive the semiclassical approximation to Feynman's path integral representation of the energy Green function of a massless particle in the shadow region of an ideal obstacle in a medium. The wavelength of the particle is assumed to be comparable to or smaller than any relevant length of the problem. Classical paths with extremal length partially creep along the obstacle and their fluctuations are subject to non-holonomic constraints. If the medium is a vacuum, the asymptotic contribution from a single classical path of overall length L to the energy Green function at energy E is that of a non-relativistic particle of mass E/c2 moving in the two-dimensional space orthogonal to the classical path for a time τ=L/c. Dirichlet boundary conditions at the surface of the obstacle constrain the motion of the particle to the exterior half-space and result in an effective time-dependent but spatially constant force that is inversely proportional to the radius of curvature of the classical path. We relate the diffractive, classically forbidden motion in the “creeping” case to the classically allowed motion in the “whispering gallery” case by analytic continuation in the curvature of the classical path. The non-holonomic constraint implies that the surface of the obstacle becomes a zero-dimensional caustic of the particle's motion. We solve this problem for extremal rays with piecewise constant curvature and provide uniform asymptotic expressions that are approximately valid in the penumbra as well as in the deep shadow of a sphere.  相似文献   

19.
20.
We present here a qualitative discussion on the optical absorption due to particle-hole excitations in thin metal films. We show that in sufficiently thin films, such excitations yield resonant absorption, when P-polarized light is obliquely incident on the metal surface. For instance, for frequency ω #62; εF where εF is the Fermi-energy, such resonances occur whenever ω satisfies the condition ω/εF = (1 + nπ/dqF)2 - 1, where n = 1,3,5,…,qF is the Fermi wave-vector and d is the thickness of the film. The experimental observability of this effect is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号