首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A cluster model based on ab initio density-functional theory was used to model gallium-stabilized δ-plutonium alloys, and to calculate the electron-density distribution, its pressure dependence, bond lengths, elastic properties (second order and third order), and inelastic properties for Pu12Ga (7.7 at% Ga) and Pu18Ga (5.3 at% Ga). The electron distribution was found to contain localized, semi localized, and delocalized contributions, with the second possessing covalent character. Two of plutonium’s 8 valence electrons were found to be itinerant, consistent with a recent prediction based on an electrostatic model, with the electron configuration for plutonium being 7s0.57p0.55f1 (itinerant) and 6d15f5 (localized), and that for gallium being 4s14p2. Applied hydrostatic pressure shifts the charge density toward a more localized Pu(d)-based distribution. The onset of the pressure-induced δ-Pu to α-Pu phase change is accompanied by a ∼0.2 electron increase in the localized population that may serve as a driving force for the phase change. Interior bonding within the Pu12Ga subunits is stronger than that of the surrounding plutonium lattice, and the Pu-Ga bonds therein relax in a direction opposite to lattice strain. This study predicts covalency in metallic plutonium, both in the Pu-Ga bonding and in the Pu-Pu bonding.  相似文献   

2.
The optical properties of rutile and anatase titanium dioxide (TiO2) are calculated from the imaginary part of the dielectric function using pseudopotential density functional method within its generalized gradient approximation (GGA) and a scissors approximation. The fundamental absorption edges calculated for the unit cell of both rutile and anatase are consistent with experimentally reported results of single crystal rutile and anatase TiO2 and with previous theoretical calculations. A significant optical anisotropy is observed in the anatase structure which holds promise for investigating the band gap modification with better visible-light response and provides a reliable foundation for addressing the effect of impurities on the fundamental absorption edge/band gap of anatase TiO2. Further calculations on the electronic structure and the optical properties of C-, N-, and S-doped anatase TiO2 are performed. The results are analyzed and discussed in terms of optical anisotropy and scissors approximations.  相似文献   

3.
To simulate the perfect single-walled boron nitride nanotubes and nanoarches with armchair- and zigzag-type chiralities and uniform diameter of ∼5 nm, we have constructed their one-dimensional (1D) periodic models. In this study, we have compared the calculated properties of nanotubes with those for both hexagonal and cubic phases of bulk: bond lengths, binding energies per B-N bond, effective atomic charges as well as parameters of total and projected one-electron densities of states. For both phases of BN bulk, we have additionally verified their lattice constants. In the density functional theory (DFT), calculations performed using formalism of the localized Gaussian-type atomic functions as implemented in the CRYSTAL-06 code we have applied Hamiltonians containing either PWGGA or hybrid (DFT+HF) B3PW exchange-correlation functionals. After calculation of Hessian matrix for the optimized structures of BN bulk (both phases) and nanotubes (both chiralities) using the CRYSTAL code we have estimated their normal phonon modes within the harmonic approximation. Applying both atomistic and continuum models we have calculated the elastic energies and moduli for SW BN nanoarches. Our calculations clearly show a reproducibility of the atomic structure, effective charges and total energy, as well as phonon and elastic properties when using either PWGGA or hybrid B3PW Hamiltonians. On other hand, there is a high sensitivity of the discrete energy spectra parameters (including band gap) to the choice of the first principles approach (the hybrid method reproduce them noticeably better).  相似文献   

4.
The Aurivillius oxide family possessess various attractive physical properties and have been commercially applicable in many areas. The regular large-period phases of this family are believed to offer better flexibilities of performance optimization than the commercial ones. However, the experimental synthesis of them is still challenging and the physical mechanisms of their structural stability are not yet clear. We propose a quasi-binary solid solution approach to study the structural stability of Aurivillius phases based on ab initio calculations. Three typical homologous series, CaBi2Nam-2NbmO3m+3 and Mm-3Bi4TimO3m+3 (M=Ca, Sr) with different in-plane lattice mismatches and chemical compositions, are studied. Our results prove that all the three systems are thermodynamically stable up to m=7 phases. By decomposing the formation process into two separate steps and analyzing the contributions to Gibbs formation energy from different factors, the configurational entropy as well as chemical bond optimization is suggested to play a crucial role in stabilizing the final phases, together with the elastic effect that was solely considered as the dominant factor before.  相似文献   

5.
6.
Using a density functional approach calculation, the structural, energetic and electronic properties of Mg2Ni phase as well as its high/low temperature (HT/LT)-Mg2NiH4 complex hydrides are systematically investigated. The optimized structural parameters including lattice constants and atomic positions are very close to the experimental data determined from X-ray and neutron powder diffraction. A detailed study of the electronic structures including the energy band, density of states (DOS) and charge density distribution reveals the orbital hybridization and characteristics of bonding orbits within Mg2Ni and its hydrides. Based on the calculated results of the reaction heat of hydrogenation, enthalpy of formation and energy cost to remove H atoms, it is found that the formation ability of LT-Mg2NiH4 is higher than that of the HT phase during the hydrogenation of Mg2Ni alloy; moreover, LT-Mg2NiH4 has a relatively higher structural stability than HT phase, which is also well explained through the DOS and the charge distributions of HT/LT-Mg2NiH4 phases.  相似文献   

7.
To obtain a rigorous definition of the chemical bonds in binary transition-metal aluminides, topological analyses were performed for VAl3 and TiAl3 in the D022 and L12 structures. The analyses were based on the valence charge densities calculated with the ab initio density functional theory. To better understand the formation mechanism of the pseudogap in these compounds, the band structure, the density of states (DOS) and the band decomposed charge density (BDCD) were calculated. The topological analyses reveal that the interactions between the (V, Ti) and Al atoms are all pure shared-shell interactions, the bonds are covalent and clearly have π-bond character. The study of the band structure, DOS and BDCD shows that the formation of the pseudogap is due to the crystal field energy splitting of the (V, Ti)-3d orbitals combined with the inter-unit-cell orbital interaction.  相似文献   

8.
In this paper we demonstrate that two independent methods of calculations (DFT based ab initio and semi-empirical crystal field theory) can be used to form a complementary picture of the optical and electronic properties of the doped host and impurity ion. The crystals considered in the present paper are: (i) YAlO3:Ce3+ and (ii) two dominant phases of TiO2—rutile and anatase. As an example, detailed calculations of the band structure and crystal field energy level scheme of YAlO3:Ce3+ are reported. From the analysis of the band structure and density of states, the character of the YAlO3 energetic bands and positions of the Ce impurity energy levels were established. It was also shown how the ab initio methods can be used for calculations of the structural properties of solids under elevated pressure. Taking the two dominant phases of TiO2 as an example, it was demonstrated how the elastic properties can be extracted from the calculated unit cell’s volume at different pressures. Particular attention was paid to the microscopic effects of crystal field, which were evidenced by the pressure-induced changes of the structure and shape of distribution of the Ti 3d electrons density of states. It was demonstrated how the difference in crystal structure of the anatase and rutile phases leads to remarkable difference in microscopic crystal field effects, which was explained by different Ti-O distances in both phases. In addition, the pressure dependence of the band gaps for anatase and rutile was investigated. It was shown that the hydrostatic pressure leads to the band gap narrowing in anatase and band gap widening in rutile, with pressure coefficients +0.00681 eV/GPa for rutile and −0.0088 eV/GPa for anatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号