首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidation of methanol. These powders were characterized by UV-Visible diffuse reflectance spectra, SEM and X-ray diffraction (XRD). The results revealed that all the Bi2O3/SrTiO3 composite powders exhibited higher photocatalytic activity than pure SrTiO3, Bi2O3 and TiO2 (P25) under visible light irradiation (λ>440 nm). The effects of the Bi2O3 contents on the photocatalytic activities of the composite powders were examined, the photocatalytic activities increased with the content of Bi2O3 increasing to a maximum of 83% and then decreased under visible light irradiation. The effects of the calcination temperatures on the photocatalytic activities of the composite powders were also investigated.  相似文献   

2.
Fe2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidizing methanol. These powders were characterized by ultraviolet (UV)-visible diffuse reflectance spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the Fe2O3/SrTiO3 composite powders with optimum proportion exhibited higher photocatalytic activity than pure SrTiO3, Fe2O3 and TiO2 (P25) under visible light (λ>440 nm) irradiation. The SEM image of the composite powders showed that SrTiO3 and Fe2O3 particles contacted well. Further research revealed that the calcination temperature is an important factor in the preparation of the composite powder with relatively high photocatalytic ability.  相似文献   

3.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

4.
In this work we report the temperature dependence of the resistivity ρ of p-Cu2GeSe3 and manganese-doped p-Cu2GeSe3 at low temperature. It was found that for a intrinsic sample ρ obeys the Shklovskii-Efros-type variable-range hopping resistivity law in the temperature range from 4 to 63 K. This behaviour is governed by generation of a Coulomb gap Δ=78 meV in the density of localized states. We find a low activation term T0=0.24 K, which is an indication of a large localization length ξ. For Mn-doped sample a metal-insulator transition (MIT) is observed at T=65 K. On the basis of the Mott criterion for metal-insulator transition, the critical carrier density nc is determined. From the analysis of resistivity data it is concluded that Mn acts as acceptor impurity.  相似文献   

5.
The La1−xMgxFeO3 powder was prepared by sol-gel method using citric acid. The compounds crystallized were perovskite phase with orthorhombic structure. The Mg-doping restrains the growth of the grain size. The conductivity and gas sensing of La1−xMgx FeO3-based sensors were investigated. We found the La0.92Mg0.08 FeO3-based sensors have the best response and selectivity to ethanol gas. Great differences on the conductance-temperature curves of La0.92Mg0.08 FeO3-based sensors between in ethanol gas and air or other gas such as H2, CO and CH4 were also found. The conductance in ethanol gas decreased with temperature from 130 to 240 °C. But in air and other gas such as H2, CO and CH4 the conductance increases all the time. It indicates that at 240 °C the conductance difference between air and ethanol was the biggest and the response reach the maximum.  相似文献   

6.
We have calculated the band structure of Ca3Co2O6 and Ca3CoNiO6 by using the self-consistent full-potential linearized augmented plane-wave method within density function theory and the generalized gradient approximation for the exchange and correlation potential. The spin-orbit interaction is incorporated in the calculations using a second variational procedure. The relation of these band structure calculations to thermoelectric transport is discussed. The results illustrate that transport is highly anisotropic with much larger mobility in the a-b plane than out of the a-b plane, and the introduction of Ni in Ca3Co2O6 alters its electronic structure and its thermoelectric transport properties.  相似文献   

7.
The electronic structure of phosphorus-contained sulfides InPS4, Tl3PS4, and Sn2P2S6 was investigated experimentally with X-ray spectroscopy and theoretically by quantum mechanical calculations. The partial densities of electron states calculated with the ab initio multiple scattering FEFF8 code correspond well to their experimental analogues—the X-ray K- and L2,3-spectra of sulfur and phosphorus. The good agreement between theory and experiment was also achieved for K-absorption spectra of S and P in the investigated sulfides. In spite of the difference in the crystallographic structure of InPS4, TI3PS4, and Sn2P2S6 that influence the form of K-absorption spectra, the electronic structure of their valence bands are rather similar. This is due to the strong interaction of the P and S atoms, which are the nearest neighbors in the compounds studied. The electron densities of p- and s-states of phosphorus are shifted by about 3 eV to lower energies in comparison to the analogous electron states of sulfur. This is connected with the greater electro-negativity of sulfur, and is confirmed by the calculated electron charge transfer from P to S.  相似文献   

8.
Variable angle spectroscopic ellipsometry has been applied to characterize the optical constants of bulk Cu(In0.7Ga0.3)5Se8 and Cu(In0.4Ga0.6)5Se8 crystals grown by the Bridgman method. The spectra were measured at room temperature over the energy range 0.8-4.4 eV. Adachi’s model was used to calculate the dielectric functions as well as the spectral dependence of complex refractive index, absorption coefficient, and normal-incidence reflectivity. The calculated data are in good agreement with the experimental ones over the entire range of photon energies. The parameters such as strength, threshold energy, and broadening, corresponding to the E0, E1A, and E1B interband transitions, have been determined using the simulated annealing algorithm.  相似文献   

9.
This paper shows that several alpha-boron type compounds may be useful as high-temperature semiconductors with decent carrier motilities, high electrical resistivity, good optical transparency, good stability under high radiation bombardment, and possess high neutron capture cross-sections. The most promising are B12O2, B12P2, and B12As2. Their relationship to alpha-boron, B13C2, and other derivative crystals is explained. A study of their chemical and thermodynamic properties indicates how single crystals useful for electronic devices can be grown.  相似文献   

10.
In this study, 223 binary oxide systems (of which, 34 systems can form cubic perovskites) are collected to explore the regularity of cubic perovskites formability. It is found that the octahedral factor (rB/rO) take the same important role as the tolerance factor (t) to form cubic perovskites in complex oxide system. Regularities governing cubic perovskites formability are obtained by using empirical structure map constructed by these two parameters, on this structure map, sample points representing systems of forming (cubic structure) and non-forming are distributed in distinctively different regions. Prediction criteria for the formability of cubic perovskites are squeezed out, which may be applied to design new substrate or buffer materials with cubic perovskite structure in compound semiconductor epitaxy.  相似文献   

11.
We report the formation of mesoporous zinc sulphide, composed by the fine network of nanoparticles, which was formed via a single precursor Zn(SOCCH3)2Lut2 complex. The complex was chemically synthesized using zinc carbonate basic, 3,5-lutidine and thioacetic acid, in air. The metal precursor complex was characterized using different conventional techniques. Thermogravimetric analysis (TGA) result indicates that the decomposition of the complex starts at 100 °C and continues up to 450 °C, finally yielding ZnS. ZnS nanocrystals were characterized by powder X-ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), N2-sorption isotherm, UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The grain diameter of nanocrystals was found to be 4-5 nm. The material followed Type-IV N2-sorption isotherm, which is the characteristic of mesoporous materials. The band gap energy, as obtained from optical measurements was around 3.8 eV.  相似文献   

12.
La0.875Ba0.125FeO3 nanocrystalline powders have been prepared by a sol-gel method. The structure, conductance and gas-sensing properties were investigated. La0.875Ba0.125FeO3 crystallizes as a perovskite phase with the orthorhombic structure. The La0.875Ba0.125FeO3 based sensor shows good sensitivity and selectivity to alcohol gas. The highest sensitivity to 500 ppm alcohol gas reached was 58 at 170 °C. The adsorption of O2 on the La0.875Ba0.125FeO3 (0 1 0) surface was studied with the first-principles calculation based on the density functional theory. The results show that the surface states are near the Fermi energy level and that the Fe ion plays an important role in the process of oxygen adsorption, which affects the gas-sensing properties.  相似文献   

13.
We show that by Ca doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppresses the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc∼3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation in the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc∼5.5 K when reacted with Pd to form materials of the type PdzBi2Te3.  相似文献   

14.
Two previous models used with success in Cu-III-VI2 semiconductors have been employed to study the temperature dependence of the Urbach energy in ordered compounds Cu-III3-VI5 and Cu-III5-VI8. The model which contains two variable parameters seems to explain better the data over the whole temperature range studied. However, the ordered vacancy or the donor acceptor defect pair in the cation sublattice provides new features in these compounds that need further study.  相似文献   

15.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

16.
By using diamond anvil cell (DAC), high-pressure Raman spectroscopic studies of orthophosphates Ba3(PO4)2 and Sr3(PO4)2 were carried out up to 30.7 and 30.1 GPa, respectively. No pressure-induced phase transition was found in the studies. A methanol:ethanol:water (16:3:1) mixture was used as pressure medium in DAC, which is expected to exhibit nearly hydrostatic behavior up to about 14.4 GPa at room temperature. The behaviors of the phosphate modes in Ba3(PO4)2 and Sr3(PO4)2 below 14.4 GPa were quantitatively analyzed. The Raman shift of all modes increased linearly and continuously with pressure in Ba3(PO4)2 and Sr3(PO4)2. The pressure coefficients of the phosphate modes in Ba3(PO4)2 range from 2.8179 to 3.4186 cm−1 GPa−1 for ν3, 2.9609 cm−1 GPa−1 for ν1, from 0.9855 to 1.8085 cm−1 GPa−1 for ν4, and 1.4330 cm−1 GPa−1 for ν2, and the pressure coefficients of the phosphate modes in Sr3(PO4)2 range from 3.4247 to 4.3765 cm−1 GPa−1 for ν3, 3.7808 cm−1 GPa−1 for ν1, from 1.1005 to 1.9244 cm−1 GPa−1 for ν4, and 1.5647 cm−1 GPa−1 for ν2.  相似文献   

17.
Using density functional perturbation theory, the optical dielectric constant, Born effective charges and phonon dispersion curves of cubic SrZrO3 have been calculated. The obtained dispersion curves show a soft phonon branch spreading from R to M points of the cubic Brillouin zone. An analysis based on the symmetry relationships indicates that the experimentally observed low-symmetry phases of SrZrO3 can be considered as results of the soft mode condensation at R and M points.  相似文献   

18.
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples.  相似文献   

19.
We report an ab initio calculation and study of the structural and electronic properties of AgAlM2(M=S,Se,Te) chalcopyrite semiconductors using the density functional theory (DFT)-based self-consistent tight-binding linear muffin tin orbital (TB-LMTO) method. The calculated equilibrium values of the lattice constants, anion displacement parameter (u), tetragonal distortion (η=c/2a) and bond lengths are in good agreement with experimental values. Our study suggests these semiconductors to be direct band gap semiconductors with band gaps 1.98 eV, 1.59 eV and 1.36 eV, respectively. These values are in good agreement with experimental values, within the limitation of the local density approximation (LDA). Our explicit study of the effects of anion displacement and p-d hybridization show that the band gap increases by 9.8%, 8.2% and 5.1%, respectively, for AgAlM2(M=S,Se,Te) due to former effect and decreases by 51%, 47% and 42%, respectively, due to latter effect.  相似文献   

20.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号