首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Mn‐assisted molecular beam epitaxy is used for the growth of (In,Mn)As nanowires (NWs) on GaAs(111)B. The transmission electron microscopy measurements revealed that despite the relatively high growth temperature regime this technique can be used to obtain (In,Mn)As NWs with high crystalline quality without any crystal defects, such as dislocations, stacking faults or precipitates inside the investigated NWs or on their side‐walls, although the growth processes of NWs were accompanied by the formation of MnAs precipitates between the NWs at the interface of the wetting layer. The results obtained are of importance for the realization of new spintronic nanostructured materials. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

2.
A series of (Ga, Mn)As epilayers have been prepared on semi-insulating GaAs (001) substrates at 230  °C by molecular-beam epitaxy under fixed temperatures of Ga and Mn cells and varied temperatures of the As cell. By systematically studying the lattice constants, magnetic and magneto-transport properties in a self-consistent manner, we find that the concentration of As antisites monotonically increases with increasing As flux, while the concentration of interstitial Mn defects decreases with it. Such a trend sensitively affects the properties of (Ga, Mn)As epilayers.  相似文献   

3.
Synthesis and magnetic properties of Mn doped ZnO nanowires   总被引:1,自引:0,他引:1  
Mn doped ZnO nanowires have been synthesized using a simple autocombustion method. The as-synthesized Mn doped ZnO nanowires were characterized by X-ray diffraction and transmission electron microscopy. An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Mn concentration. Optical absorption studies show an increment in the band gap with increasing Mn content, and also give evidence for the presence of Mn2+ ions in tetrahedral sites. All Zn1−xMnxO (0≤x≤0.25) samples are paramagnetic at room temperature. However, a large increase in the magnetization is observed below 50 K. This behavior, along with the negative value of the Weiss constant obtained from the linear fit to the susceptibility data below room temperature, indicate ferrimagnetic behavior. The origin of ferrimagnetism is likely to be either the intrinsic characteristics of the Mn doped samples, or due to some spinel-type impurity phases present in the samples that could not be detected.  相似文献   

4.
(Ga,Mn)As光调制反射光谱   总被引:1,自引:1,他引:0       下载免费PDF全文
王志路  孙宝权 《发光学报》2007,28(4):557-560
室温下我们研究了稀磁半导体(Ga,Mn)As的光调制反射(PR)光谱,观测到来自样品的Franz-Keldysh振荡(FKO)信号。随着Mn原子浓度的增加,PR线形展宽,但是临界点E0E00没有明显的移动。根据FKO振荡数据,计算得到样品表面电场强度随Mn原子掺杂浓度的增加而增强。测量到与Mn原子掺杂相关的杂质带,其能量位置离GaAs价带边~100 meV。根据样品的表面电场强度和表面耗尽层模型,估算样品的空穴浓度为~1017cm-3,较低的空穴浓度可能与样品具有较低的居里温度有关,或测量的PR信号来自于样品中外延层的部分耗尽区域。  相似文献   

5.
We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature.  相似文献   

6.
ABINIT simulation package with built in local density, generalized gradient, and spin local density approximations was used to investigate the structural, electronic, and magnetic properties of cation mixed (Ga,Mn)(As,N) and (In,Mn)(As,N) quaternaries with equal and fixed compositions of Ga, In, and Mn atoms. In particular, total energy minimization approach was used to compute the equilibrium structural parameters of zinc-blende (GaAs, InAs, and MnAs), wurtzite (GaN, InN, and MnN) binary parent compounds, as well as, the corresponding equilibrium parameters of (Ga,Mn)(As,N) and (In,Mn)(As,N) quaternary systems. The band structures of zinc-blende GaAs, InAs, and MnAs binary parent compounds were computed and analyzed. Spin polarized band structures of the cation mixed (Ga,Mn)(As,N) and (In,Mn)(As,N) quaternaries with equal compositions of Ga, In, and Mn cations were computed and analyzed using spin local density approximation based calculations. Moreover, the magnetic properties of (Ga,Mn)(As,N) and (In,Mn)(As,N) quaternaries with equal concentration of Ga, In, and Mn cations were investigated. Our results suggest that the two quaternary systems are nonmagnetic. An interpretation of our results is presented. In addition, the magnetic properties of (Ga,Mn)N nanocrystal ternaries constructed from doping GaN with one or two Mn atoms were investigated using Vienna Ab-initio Simulation Package (VASP) and compared with those of (Ga,Mn)(As,N) quaternaries.  相似文献   

7.
利用金(Au)辅助催化的方法,通过金属有机化学气相沉积技术制备了GaAs纳米线及GaAs/InGaAs纳米线异质结构.通过对扫描电子显微镜(SEM)测试结果分析,发现温度会改变纳米线的生长机理,进而影响形貌特征.在GaAs纳米线的基础上制备了高质量的纳米线轴、径向异质结构,并对生长机理进行分析.SEM测试显示,GaAs/InGaAs异质结构呈现明显的“柱状”形貌与衬底垂直,InGaAs与GaAs段之间的界面清晰可见.通过X射线能谱对异质结样品进行了线分析,结果表明在GaAs/InGaAs轴向纳米线异质结构样品中,未发现明显的径向生长.从生长机理出发分析了在GaAs/InGaAs径向纳米线结构制备过程中伴随有少许轴向生长的现象.  相似文献   

8.
Migration barriers for diffusion of interstitial Mn in the dilute magnetic semiconductor (Ga,Mn)As are studied using first-principles calculations. The diffusion pathway goes through two types of interstitial sites: As coordinated and Ga coordinated. The energy profile along the path is found to depend on the ratio of concentrations between substitutional and interstitial Mn in GaAs. Two regions of distinctly different behavior, corresponding to n-type and p-type (Ga,Mn)As, are identified. The difference in mobility is a reflection of the change in the charge state of Mn interstitials (double donors) that occurs in the presence of substitutional Mn impurities (acceptors). In addition, substitutional Mn impurities are shown to act as traps for interstitial Mn. The effective migration barrier for the positively doubly charged Mn interstitials in p-type (Ga,Mn)As is estimated to vary from 0.55 to about 0.95 eV.  相似文献   

9.
A self-organized InAs/GaAs quantum dot (QD) array is doped with Mn. The effect of the Mn concentration on the morphology and QD luminescence properties is investigated. It is found that Mn deltadoping of the GaAs buffer layer before QD growth with a layer concentration of 1014 cm?2 leads to the formation of an array of large QDs with variable composition In x Ga1 ? x As. The effect is explained within a model of In and Ga atom interdiffusion.  相似文献   

10.
Two different ferromagnetic-paramagnetic transitions are detected in (Ga,Mn)As/GaAs(001) epilayers from ac susceptibility measurements: transition at a higher temperature results from (Ga,Mn)As cluster phases with [110] uniaxial anisotropy and that at a lower temperature is associated with a ferromagnetic (Ga,Mn)As matrix with 100 cubic anisotropy. A change in the magnetic easy axis from [100] to [110] with increasing temperature can be explained by the reduced contribution of 100 cubic anisotropy to the magnetic properties above the transition temperature of the (Ga,Mn)As matrix.  相似文献   

11.
In GaAs nanowires grown along the cubic [111]c direction, zinc blende and wurtzite arrangements have been observed in their stacking sequence, since the energetic barriers for nucleation are typically of similar order of magnitude. It is known that the interplanar spacing of the (111)c Ga (or As) planes in the zinc blende polytype varies slightly from the wurtzite polytype. However, different values have been reported in the literature. Here, the ratio of the interplanar spacing of these polytypes is extracted based on X‐ray diffraction measurements for thin GaAs nanowires with a mean diameter of 18–25 nm. The measurements are performed with a nano‐focused beam which facilitates the separation of the scattering of nanowires and of parasitic growth. The interplanar spacing of the (111)c Ga (or As) planes in the wurtzite arrangement in GaAs nanowires is observed to be 0.66% ± 0.02% larger than in the zinc blende arrangement.  相似文献   

12.
The effect of ferromagnetic layers on the spin polarization of holes and electrons in ferromagnet-semiconductor superlattices with a fixed Mn δ-layer thickness of 0.11 nm and different GaAs interlayer thicknesses varying in the range from 2.5 to 14.4 nm and a fixed number of periods (40) is studied by means of hot-electron photoluminescence (HPL). Here, our study of the HPL demonstrates that the holes in δ-layers of (Ga,Mn)As DMS occupy predominantly the Mn acceptor impurity band. The width of the impurity band decreases with the increase of the interlayer distance. We also found that an increase in the GaAs interlayer thickness softens the magnetic properties of the ferromagnetic layers as well as reduces the carrier polarization. It is demonstrated that the hole spin polarization in the DMS layers and spin polarization of electrons in nonmagnetic GaAs are proportional to the sample magnetization.  相似文献   

13.
Local structure of Mn atoms in Ga1−xMnxAs epilayers was studied using the X-ray absorption fine structure (XAFS) at Mn K-edge. X-ray near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques were used. XAFS spectra for different Mn sites has been calculated and compared with the experimental data. Multi-parameter fitting of the EXAFS data indicates that 15-25% of Mn atoms are in interstitial sites in the as grown films. The Mn-As bond length has been found longer than Ga-As bond length in GaAs for both substitutional (MnGa) and interstitial (MnI) sites.  相似文献   

14.
叶显  黄辉  任晓敏  郭经纬  黄永清  王琦  张霞 《物理学报》2011,60(3):36103-036103
利用金辅助金属有机化学气相沉淀法(MOCVD)在GaAs(111)B衬底上分别制备了InAs/GaAs和InAs/In x Ga1-xAs/GaAs(0≤x≤1)纳米线异质结构.实验结果显示,直接生长在GaAs纳米线上的InAs纳米线生长方向杂乱或者沿着GaAs纳米线侧壁向衬底方向生长,生长的含有In x Ga1-xAs组分渐变缓冲段的InAs/In x Ga1-x关键词: 纳米线异质结构 xGa1-xAs')" href="#">InxGa1-xAs 组分渐变缓冲层 金属有机化学气相沉淀法  相似文献   

15.
We show that suitably designed magnetic semiconductor heterostructures consisting of Mn delta (delta)-doped GaAs and p-type AlGaAs layers, in which the locally high concentration of magnetic moments of Mn atoms are controllably overlapped with the two-dimensional hole gas wave function, realized remarkably high ferromagnetic transition temperatures (T(C)). A significant reduction of compensative Mn interstitials by varying the growth sequence of the structures followed by low-temperature annealing led to high T(C) up to 250 K. The heterostructure with high T(C) exhibited peculiar anomalous Hall effect behavior, whose sign depends on temperature.  相似文献   

16.
Single crystal germanium nanowires have been grown by vapour-liquid-solid deposition onto silicon oxide substrates with Au catalyst nanoparticles. They have been doped by two different techniques: Ge and Mn co-evaporation during growth and post-growth Mn implantation. Scanning electron microscopy images show that Mn-implanted nanowires have a lower surface density and a smaller average diameter (18.8 nm) than the un-doped ones and those Mn doped by co-deposition. The effectiveness of Mn doping has been verified by X-ray photoemission spectroscopy and by energy-dispersive X-ray measurements, indicating in the two cases significant Mn atomic concentration in the nanowire. X-ray diffraction indicates that the nanowires are single crystals and that they do not contain precipitates of Mn extrinsic phases. Both SEM and XPS experimental evidences are in line to indicate that the Mn doping by ion implantation is preferable with respect to that one performed by co-evaporation as it reduces the thickness of the outer oxide sheath of the nanowires and their diameter.  相似文献   

17.
The dependence of magnetic properties of GaAs:Mn and MnAs epitaxial films grown on GaAs (001) by laser ablation of Mn and undoped GaAs in a hydrogen atmosphere under the growth conditions has been studied by magnetic force microscopy (MFM). Magnetic probe calibration for quantitative MFM measurements was performed by scanning across the slit of the magnetic-head of a tape recorder through which controlled direct current was passed. The dipole approximation was used to describe the magnetic properties of the MFM probe. Nonuniformity of the magnetization of GaAs:Mn films related to the formation of MnAs nanoinclusions, which are ferromagnetic at 300 K, has been observed. The typical scales of the spatial nonuniformity of the magnetization of GaAs:Mn films were varied from 270 to 550 nm depending on the film-growth conditions. The MnAs phase was identified by MFM measurements at an elevated temperature (up to 80°N).  相似文献   

18.
It is shown that (Ga,Mn)As layers formed by Mn+ ion implantation into GaAs and subsequent annealing by an excimer laser pulse with an energy density to 200–300 mJ/cm2 feature the properties of the p-type semiconductor and ferromagnetic properties. The threshold dose of implanted ions (~1015 cm–2) for activating Mn acceptors is determined. The sheet hole concentration and the Curie temperature increase with further increasing Mn+ ion dose. Hysteresis loops in the magnetic field dependences of the Hall effect, the negative magnetoresistance, and magnetic and structural studies suggest that the layers are analogues of single-phase ferromagnetic compounds (Ga,Mn)As formed by low-temperature molecular beam epitaxy.  相似文献   

19.
The paper reports on the results of a study of the synthesis conditions effects on magnetic and transport properties of nanosized layers of high-Tc diluted magnetic semiconductors (DMS), such as Ge:Mn, Si:Mn and Si:Fe, fabricated by laser-plasma deposition over a wide range of the growth temperature, Tg=(20-550) °C on single-crystal GaAs or Al2O3 substrates. Ferromagnetism of the layers was detected by measurement data of the magneto-optical Kerr effect, anomalous Hall effect, negative magnetoresistance and ferromagnetic resonance (FMR) at 5-500 K. The optimum growth temperature, Tg, for Si:Mn/GaAs layers with Tc≈400 K is shown to be about 400 °C. The Si:Mn/Al2O3 layers with 35% of Mn have the metal-type of conductivity with manifestation of magnetization up to room temperature. Different types of uniformly doped structures and digital alloys have been investigated. In contrast to GaSb:Mn films, Si-based ferromagnetic layers have strongly different magnetic and electric properties in case of uniformly doped structures and digital alloys. Positive results of the Fermi level variation effect on the improvement of Si- and Ge-based DMS layers have been gained on the use of additional doping with shallow acceptor Al impurity which contributes to the increase of the hole concentration and the RKKY exchange interaction of 3d-ions. The Ge:(Mn, Al)/GaAs or Ge (Mn, Al)/Si layers grown at 20 °C feature surprising extraordinary angular dependence of FMR.  相似文献   

20.
We propose to replace Ga in (Ga,Mn)As with Li and Zn as a route to high Curie temperature, carrier mediated ferromagnetism in a dilute moment n-type semiconductor. Superior material characteristics, rendering Li(Zn,Mn)As a realistic candidate for such a system, include high solubility of the isovalent substitutional Mn impurity and carrier concentration controlled independently of Mn doping by adjusting Li-(Zn,Mn) stoichiometry. Our predictions are anchored by ab initio calculations and comparisons with the familiar and directly related (Ga,Mn)As, by the physical picture we provide for the exchange interaction between Mn local moments and electrons in the conduction band, and by analysis of prospects for the controlled growth of Li(Zn,Mn)As materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号