首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that Bose-Einstein condensates in a honeycomb optical lattice can be described by a nonlinear Dirac equation in the long wavelength, mean field limit. Unlike nonlinear Dirac equations posited by particle theorists, which are designed to preserve the principle of relativity, i.e., Poincaré covariance, the nonlinear Dirac equation for Bose-Einstein condensates breaks this symmetry. We present a rigorous derivation of the nonlinear Dirac equation from first principles. We provide a thorough discussion of all symmetries broken and maintained.  相似文献   

2.
We have found on the basis of the symmetry analysis of the standard Dirac equation with nonzero mass the new physically meaningful features of this equation. The new bosonic symmetries of the Dirac equation in both the Foldy-Wouthuysen and the Pauli-Dirac representations are found, among which (together with the 32-dimensional pure matrix algebra of invariance) the new spin s=(1,0) multiplet Poincaré symmetry is proved. In order to carry out the corresponding proofs a 64-dimensional extended real Clifford-Dirac algebra is put into consideration.  相似文献   

3.
We study the properties of graphene wormholes in which a short nanotube acts as a bridge between two graphene sheets, where the honeycomb carbon lattice is curved from the presence of 12 heptagonal defects. By taking the nanotube bridge with very small length compared to the radius, we develop an effective theory of Dirac fermions to account for the low-energy electronic properties of the wormholes in the continuum limit, where the frustration induced by the heptagonal defects is mimicked by a line of fictitious gauge flux attached to each of them. We find in particular that, when the effective gauge flux from the topological defects becomes maximal, the zero-energy modes of the Dirac equation can be arranged into two triplets, that can be thought as the counterpart of the two triplets of zero modes that arise in the dual instance of the continuum limit of large spherical fullerenes. We further investigate the graphene wormhole spectra by performing a numerical diagonalization of tight-binding Hamiltonians for very large lattices realizing the wormhole geometry. The correspondence between the number of localized electronic states observed in the numerical approach and the effective gauge flux predicted in the continuum limit shows that graphene wormholes can be consistently described by an effective theory of two Dirac fermion fields in the curved geometry of the wormhole, opening the possibility of using real samples of the carbon material as a playground to experiment with the interaction between the background curvature and the Dirac fields.  相似文献   

4.
Using a representation of multichannel quantum defect theory in terms of a quantum Poincaré map for bound Rydberg molecules, we apply Jung's scattering map to derive a generalized quantum map, that includes the continuum. We show that this representation not only simplifies the understanding of the method, but moreover produces considerable numerical advantages. Finally we show under what circumstances the usual semi-classical approximations yield satisfactory results. In particular we see that singularities that cause problems in semi-classics are irrelevant to the quantum map.  相似文献   

5.
According to an induced-matter approach, Liu and Wesson obtained the rest mass of a typical particle from the reduction of a 5D Klein–Gordon equation to a 4D one. Introducing an extra-dimension momentum operator identified with the rest mass eigenvalue operator, we consider a way to generalize the 4D Dirac equation to 5D. An analogous normal Dirac equation is gained when the generalization reduces to 4D. We find the rest mass of a particle in curved space varies with spacetime coordinates and check this for the case of exact solitonic and cosmological solution of the 5D vacuum gravitational field equations.  相似文献   

6.
The ECSK and Yang-Mills theories are constructed with emphasis on their fiber bundle structure. In particular, the momentum tensor is derived as the Noether current of translational symmetry. The structure of the ECSK theory as a gauge theory of the Poincaré group is discussed. A theory of a Dirac field exhibiting internal affine symmetry, i.e., full internal Poincaré symmetry, is described. Aspects of the topological-geometric foundations of these theories are discussed, and some intuitive interpretations are presented.  相似文献   

7.
The radiative response of the classical electron is commonly described by the Lorentz–Abraham–Dirac (LAD) equation. Dirac’s derivation of this equation is based on energy and momentum conservation laws and on regularization of the field singularities and infinite energies of the point charge by subtraction of certain quantities: “We... shall try to get over difficulties associated with the infinite energy of the process by a process of direct omission or subtraction of unwanted terms”. To substantiate Dirac’s approach and clarify the mass renormalization, we introduce the point charge as a limit of extended charges contracting to a point; the fulfillment of conservation laws follows from the relativistic covariant Lagrangian formulation of the problem. We derive the relativistic point charge dynamics described by the LAD equation from the extended charge dynamics in a localization limit by a method which can be viewed as a refinement of Dirac’s approach in the spirit of Ehrenfest theorem. The model exhibits the mass renormalization as the cancellation of Coulomb energy with the Poincaré cohesive energy. The value of the renormalized mass is not postulated as an arbitrary constant, but is explicitly calculated. The analysis demonstrates that the local energy–momentum conservation laws yield dynamics of a point charge which involves three constants: mass, charge and radiative response coefficient θθ. The value of θθ depends on the composition of the adjacent potential which generates Poincaré forces. The classical value of the radiative response coefficient is singled out by the global requirement that the adjacent potential does not affect the radiated energy balance and affects only the local energy balance involved in the renormalization.  相似文献   

8.
In this paper, we have obtained exact analytical solutions for the bound states of a graphene Dirac electron in magnetic fields with various q-parameters under an electrostatic potential. In order to solve the time-independent Dirac–Weyl equation, the Nikoforov–Uvarov (NU) and Frobenius methods have been used. We have also investigated the thermodynamic properties by using the Hurwitz zeta function method for one of the states. Finally, some of the numerical results are also shown.  相似文献   

9.
We show that any Poincaré-invariant equation for particles of zero mass and of discrete spin provide a unitary representation of the conformal group, and find an explicit expression of the conformal group generators in terms of Poincaré group generators.  相似文献   

10.
It is well known that velocities do not commute in the presence of an electromagnetic field. This property implies that angular algebra symmetries, such as the sO(3) and Lorentz algebra symmetries, are broken. To restore these angular symmetries we show the necessity of adding the Poincaré momentum M to the simple angular momentum L. These restorations performed successively in a flat space and in a curved space lead in each case to the generation of a Dirac magnetic monopole. In the particular case of the Lorentz algebra we consider an application of our theory to gravitoelectromagnetism. In this last case we establish a qualitative relation giving the mass spectrum for dyons.  相似文献   

11.
We study the Maxwell–Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell–Dirac equations, without any reference to gauge dependent quantities. We show how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell–Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form.  相似文献   

12.
Approximate analytical solutions of the Dirac equation are obtained for some diatomic molecular potentials plus a tensor interaction with spin and pseudospin symmetries with any angular momentum. We find the energy eigenvalue equations in the closed form and the spinor wave functions by using an algebraic method. We also perform numerical calculations for the Pöschl-Teller potential to show the effect of the tensor interaction. Our results are consistent with ones obtained before.  相似文献   

13.
By exact solution of time-dependent Schrödinger equation of electron in graphene under interaction with E2g phonons, we investigate the dynamical behavior of Dirac quasi-particle in the process of lattice vibration. Due to the global geometric phases acquired by electron during lattice vibration, an anomalous shift of the vibration frequency is obtained. We calculate the Fermi energy dependence of frequency shift which is in consistence with experiment in case of small doping density.  相似文献   

14.
We calculate the effect of radial confinement on the Schwinger pair production rate by solving the Dirac equation in a flux-tube cylinder containing a constant chromoelectric field in the longitudinal direction. We show how the Dirac equation separates into radial and longitudinal equations for a mass term which has an arbitrary radial dependence and introduce radial confinement by having a finite mass inside the cylinder and an infinitely large mass outside. The resulting boundary conditions are equivalent to the MIT boundary condition. The equations are solved analytically for a constant quark mass inside the flux-tube, which acts like a waveguide. The discretization of the transverse wave vector which has a continuous spectrum in the non-confined case leads to a large suppression of the Schwinger pair-production rate for small radii. The minimal radius where pairs are created decreases with increasing field strength. The suppression turns out to be larger for heavier quarks than for light quarks.  相似文献   

15.
We show that if certain Poincaré-like integrals are conserved, then to each configuration coordinate of a system an entity can be associated that is an acceptable generalization of the notion of canonical momentum: In the particular case of standard mechanics, the canonical momenta are retrieved. Under certain general restrictions, the Poincaré momenta make sense for either mechanical or general systems for which we do not have (or are not aware of) entities (like the Lagrangian) that are generally used to define the momentum. The Poincaré momentum may also make sense for systems whose characteristics are difficult, or impossible, to reconcile with the notion of the usual canonical momentum. It is also relevant for certain cases where a Lagrangian exists, but it leads to a mixture of physical and unphysical entities. In particular, we show that while physical canonical momenta do not generally exist in the new Nambu mechanics (because of the dimensionality of state vector space), the Poincaré momenta exist, they are physical, and have the properties we could have expected for the mechanics.  相似文献   

16.
A general formalism is developed that allows the construction of a field theory on quantum spaces which are deformations of ordinary spacetime. The symmetry group of spacetime (the Poincaré group) is replaced by a quantum group. This formalism is demonstrated for the -deformed Poincaré algebra and its quantum space. The algebraic setting is mapped to the algebra of functions of commuting variables with a suitable *-product. Fields are elements of this function algebra. The Dirac and Klein-Gordon equation are defined and an action is found from which they can be derived.Received: 17 July 2003, Published online: 26 September 2003  相似文献   

17.
The effect of strain on the Landau levels (LLs) spectra in graphene is studied, using an effective Dirac-like Hamiltonian which includes the distortion in the Dirac cones, anisotropy and spatial-dependence of the Fermi velocity induced by the lattice change through a renormalized linear momentum. We propose a geometrical approach to obtain the electron’s wave-function and the LLs in graphene from the Sturm–Liouville theory, using the minimal substitution method. The coefficients of the renormalized linear momentum are fitted to the energy bands, which are obtained from a Density Functional Theory (DFT) calculation. In particular, we evaluate the case of Dirac cones with an ellipsoidal transversal section resulting from uniaxially strained graphene along the Arm-Chair (AC) and Zig-Zag (ZZ) directions. We found that uniaxial strain in graphene induces a contraction of the LLs spectra for both strain directions. Also, is evaluated the contribution of the tilting of Dirac cone axis resulting from the uniaxial deformations to the contraction of the LLs spectra.  相似文献   

18.
We study a Schrödinger equation involving a Hamiltonian that is a second-order differential operator, describes free spin-1/2 particles with both energy signs and a definite mass, and depends on a parameterG. One obtains the usual Dirac Hamiltonian by settingGi, but for real values ofG the one-particle theory developed here possesses an indefinite metric, so negative energy states have negative normalization. Although the new equation is not manifestly covariant, it is demonstrated that it can be made invariant under proper orthochronous Poincaré transformations; it is also invariant under the CPT transformation and charge conjugation, but not, as we interpret it, under space inversion.Supported in part by the U.S. Energy Research and Development Administration.  相似文献   

19.
We theoretically investigate the electronic transport properties through a rectangular potential barrier embedded in armchair-edge graphene nanoribbons (AGNRs) of various widths. Using the Landauer formula and Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the conductance and Fano factor for the both metallic and semiconducting AGNRs, respectively. It is shown that, by some numerical examples, at Dirac point the both types of AGNRs own a minimum conductance associated with the maximum Fano factor. The results are discussed and compared with the previous relevant works.  相似文献   

20.
Finite-dimensional matrix representations of the Poincaré group are discussed with particular emphasis on the eight-dimensional spinor representation. It is speculated that the complex eight-dimensional representation space might be interpreted as a more fundamental entity than Minkowski space, being in a sense a square root of the latter. One can model the usual position, momentum, and angular momentum variables of a particle of nonzero rest mass and arbitrary spin by real bilinear forms in the 8-spinor components, and obtain their correct equations of motion by subjecting the spinor to a Schrödinger-like evolution equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号