首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New glasses have been synthesized in a multicomponent system based on indium fluoride. Samples of a few mm in thickness were obtained. They are transparent and homogeneous. Main physical properties such as density, characteristic temperatures, density, thermal expansion and refractive index have been measured. The evolution versus composition is reported for samples with the formula: (35−x) InF3-xGaF3-10YF3-25PbF2-15CaF2-15ZnF2. Tg lies between 260 and 296 °C while melting starts around 480 °C. Glass samples are stable at room temperature. By comparison with other standard fluoride glasses, they exhibit higher refractive index and density.  相似文献   

2.
The thermodynamic properties of the spinel ferromagnetic compounds CdCr2Se4 and CdCr2S4 have been investigated by making heat capacity and thermal expansion measurements on single crystals. For both compounds, the ferromagnetic transition is marked by λ-type thermal anomalies, and the results provide a pressure dependence of the transition temperatures that is in agreement with direct measurements. Below the transition, CdCr2S4 shows an anomalous heat-capacity contribution and negative thermal expansion, which are in contrast to the conventional behavior found in CdCr2Se4.  相似文献   

3.
Elastic properties, thermal expansion coefficients and electronic structures of Ti0.75X0.25C carbides (X=W, Mo, Ta, Nb, V, Hf, Zr, Cr and Al) were systematically investigated using ab initio density functional theory (DFT) calculations. The calculated elastic moduli, electronic structures and thermal expansion coefficients α(T) of pure TiC are in good agreement with experimental data and other DFT calculations. Based on a phenomenological formula, the trends of elastic properties and ductile/brittle behavior of Ti0.75X0.25C were analyzed. It was found that alloying elements W, Mo, Ta, Nb, V and Hf can increase elastic moduli, while Zr, Cr and Al reduce moduli. The nearly free electron model and Debye approximation were applied in the evaluation of α(T). The anharmonic effect was taken into account by including volume-dependent elastic moduli and Debye temperature. Results show that alloying additions of 3d V, 4d Zr and Mo slightly reduce α(T), while 3d Cr increases α(T), Al, 4d Nb, 5d Hf and W almost keep α(T) unchanged in Ti0.75X0.25C at high temperatures. The electronic structures of Ti0.75X0.25C were calculated and analyzed, and the electronic density of states was used to interpret variations of elastic properties and ductile/brittle behavior induced by alloying additions.  相似文献   

4.
We report on the first Raman data of Cu substituted La1−ySryMn1−xCuxO3 (0≤x≤0.10 and 0.17≤y≤0.3, accordingly in order to have the same Mn4+/[Mn4++Mn3+] ratio), collected in the frequency range 100-900 cm−1 and at room temperature, with parallel (eies) and crossed (eies) polarizations of the incident (ei) and scattered (es) light. Spectra were fitted with a Drude-Lorentz model, and peaks at 190-220 and 430 cm−1, together with two broad structures centered at near 500 and 670 cm−1, have been found. We also have observed that the A1g mode is substantially shifted with increasing Cu substitution. The A1g phonon shift is a linear function of the tolerance factor t and the rhombohedral angle αr, thus following the structural changes of the MnO6 octahedra in the system.  相似文献   

5.
The velocity autocorrelation functions and memory functions of dense classical fluids may be directly obtained from the static radial distribution function g(r) in an approximate way. Following the Mori projection operator formalism, the memory functions may be related to the fluctuating force correlation. At low densities, these functions may be evaluated by following the trajectories of particle pairs in the interatomic potential. At higher densities, the force correlation functions can be evaluated approximately from particle pair trajectories via the potential of the mean force. The contributions to the memory function come mainly from particle pairs with rather specific and rather short interatomic distances. At higher temperatures, this specific distance is even shorter, hence the memory function decays quickly with time. At lower temperatures, a negative region of the memory function may develop. On the other hand, there is relatively little density dependence of the normalized memory function. The results for argon fluids at various densities and temperatures agree satisfactorily with the molecular dynamics and the Enskog values. The decrease of the diffusion coefficient with density is partly due to the nature of g(r) which reflects the stronger clustering of atoms at higher densities.  相似文献   

6.
A series of polycrystalline perovskite samples La0.65Nd0.05(Sr, Ba)0.3MnO3 were prepared by a sol–gel technique. Their permeabilities have been measured at different fields and temperatures. A pronounced dispersion of the relaxation was observed near the Curie temperature TC, which was obtained from the permeability vs. temperature curves. The effects of the average A-site cation radius 〈rA〉 and the A-site cation disorder parameter σ2(rA) on the permeability were investigated. With increasing 〈rA〉 and σ2(rA), the permeability of La0.65Nd0.05(Sr, Ba)0.3MnO3 increases linearly.  相似文献   

7.
The dielectric properties and loss of Bi1.5ZnSb1.5O7 a poor-semiconducting ceramic were investigated by impedance spectroscopy, in the frequency range from 5 Hz to 13 MHz. Electric measurements were performed from 100 to 700 °C. Pyrochlore type phase was synthesized by the polymeric precursor method. Dense ceramic with 97% of the theoretical density was prepared by sintering via constant heating rate. The dielectric permittivity dependence as a function of frequency and temperature showed a strong dispersion at frequency lower than 10 kHz. The losses exhibit slight dependence with the frequency at low temperatures presenting a strong increase at temperatures higher than 400 °C. A decrease of the loss magnitude occurs with increasing frequency. Relaxation times were extracted using the dielectric functions Z″(ω) and M″(ω). The plots of the relaxation times τZ and τM as a function of temperature follow the Arrhenius law, where a single slope is observed with activation energy values equal to 1.38 and 1.37 eV, respectively.  相似文献   

8.
Chalcogenide glasses from the As2Se3-As2Te3-Sb2Te3 system were synthesized for the first time. The glass-forming region was determined by X-ray diffraction and electron microscopic analyses.The basic physicochemical parameters such as density (d), microhardness (HV) and temperatures of phase transformations (glass transition Tg, crystallization Tcr and melting Tm) were measured. Compactness and some thermomechanical characteristics such as volume (Vh) and formation energy (Eh) of micro-voids in the glassy network as well as the elasticity module (E) were calculated. The glass-forming ability was evaluated according to Hruby's criteria (KG). The correlation between composition and properties of the (As2Se3)x(As2Te3)y(Sb2Te3)z glasses was established and comprehensively discussed.  相似文献   

9.
Spin-polarized calculations were performed to investigate the structural, elastic, electronic, and magnetic properties of InCCo3 and InNCo3. The deviation of our calculated lattice parameters and equilibrium volume from experimental results is less than 0.8% and 2.5%, respectively. The obtained values of elasticity moduli Cij, bulk modulus B, and shear modulus G are discussed. From the calculated band structure and the total and partial densities of states, we have concluded that these compounds are electrical conductors; moreover, they are bonded by a mixture of covalent, ionic, and metallic bonds. Our calculations show that InCCo3 has nonmagnetic properties, while InNCo3 could have a magnetic behaviour, with an average magnetic moment about 0.54 μB/atom, which is mostly derived from d electrons of the cobalt atoms in the energy range from −5 eV up to the Fermi level.  相似文献   

10.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

11.
Local structural order and temperature-dependent structural variation have been studied in the molecular-based layer ferrimagnet (n-C4H9)4N FeIIFeIII(C2O4)3 by EXAFS and high resolution X-ray powder diffraction. The EXAFS spectra measured at the Fe K-edge are successfully modelled by successive O, C, O and metal shells, showing that even when there is extensive structural disorder due to stacking faults, the local structural order in this class of ferrimagnets is fully retained. In this salt, which shows remarkable negative magnetisation at low temperature (Néel class Q), the EXAFS Debye-Waller factor has a discontinuity at 40 K, corresponding to one found in the magnetisation. At the same temperature there is also a change in the expansion of the lattice as evidenced by the high resolution X-ray powder diffraction.  相似文献   

12.
We present calculations of the spin-averaged pair distribution function g(r) in a homogeneous gas of electrons moving in dimensionality D=3 or D=2 at finite temperature. The model involves the solution of a two-electron scattering problem via an effective potential, which embodies many-body effects through a self-consistent Hartree approximation, leading to two-body wave functions to be averaged over a temperature-dependent distribution of relative momentum for electron pairs. We report illustrative numerical results for g(r) in an intermediate-coupling regime and interpret them in terms of changes of short-range order with increasing temperature.  相似文献   

13.
Thin amorphous As-Se films were prepared by pulsed laser deposition (PLD) and by classical thermal evaporation techniques. Raman spectra and optical properties (optical gap, Egopt, index of refraction, n, third-order non-linear susceptibility, χ(3)) of prepared films and their photo- and thermally induced changes were studied. The structure of laser deposited films was close to the corresponding bulk glasses contrary to thermal evaporated films. The composition of PLD films was practically unchanged during the process of deposition. The optically and thermally induced changes of n and of Egopt in PLD films are different from the changes in thermally deposited films. The differences are discussed.  相似文献   

14.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

15.
Impedance spectroscopy measurements and synchrotron X-ray diffraction studies of Sc2(WO4)3 at 400°C have been carried out as a function of pressure up to 4.4 GPa. Ionic conductivity shows normal decrease with increase in pressure up to 2.9 GPa, but then increases at higher pressures. The XRD results show that Sc2(WO4)3 undergoes pressure-induced amorphization at pressures coincident with the reversal in conductivity behavior. The loss of crystal structure at high pressure is consistent with growing evidence of pressure-induced amorphization in negative thermal expansion materials, such as Sc2(WO4)3. The increase in conductivity in the amorphized state is interpreted as the result of an increase in structural entropy and a concomitant reduction of energy barriers for ionic transport.  相似文献   

16.
The magnetization, resistivity ρ, thermoelectric power (TEP) S, and thermal conductivity κ in perovskite cobalt oxide Gd0.7Sr0.3CoO3 have been investigated systematically. Based on the temperature dependence of susceptibility χg(T) and Seebeck coefficient S(T), a combination of the intermediate-spin (IS) state for Co3+ and the low-spin (LS) state for Co4+ can be suggested. A metal-insulator transition (MIT) caused by the hopping of σ* electrons (localized or delocalized eg electrons) from the IS Co3+ to the LS Co4+ is observed. Meanwhile, S(T) curve also displays an obvious phonon drag effect. In addition, based on the analysis of the temperature dependence of S(T) and ρ(T), the high-temperature small polaron conduction and the low-temperature variable-range-hopping conduction are suggested, respectively. As to thermal conduction κ(T), rather low κ values in the whole measured temperature range is attributed to unusually large local Jahn-Teller (JT) distortion of Co3+O6 octahedra with IS state.  相似文献   

17.
The electric transport character in heterojunction composed of a La0.7Ce0.3MnO3 film and a 0.5 wt% Nb-doped SrTiO3 substrate (LCEM/STON) is investigated. It is found that the energy band gap (Eg) between LCEM and STON decreases with increasing temperatures. The most striking observation of present work is that there exists a variation of reverse transport mechanism from ionization to tunneling at the temperature of 175 K. We attribute the temperature dependence of reverse transport mechanism to co-work of Eg and the ferromagnetic (FM) insulting phase in the heterojunction. These results are helpful in configuring artificial devices using manganites.  相似文献   

18.
The complex dielectric and AC conductivity response of BaBi2Nb2O9 relaxor ferroelectric ceramics were studied as a function of frequency (100 Hz-10 MHz) at various temperatures. The observed dielectric behavior was characterized by two types of relaxation processes which were described by the ‘universal relaxation law’. The frequency dependence of conductivity which showed a classical relaxor behavior followed the Jonscher's universal law σ(ω)=σ0+Aωn. The exponent n exhibited a minimum in the vicinity of temperatures of dielectric anomaly while the pre-factor A showed a maximum. The temperature dependence of n followed the Vogel-Fulcher relation with activation energy of about 0.14 eV.  相似文献   

19.
The single crystal of [Ni(ina)2(H2O)4]·(sac)2, (NINS), (ina is isonicotinamide and sac is saccharinate) complex has been prepared and its structural, spectroscopic and thermal properties have been determined. The title complex crystallizes in monoclinic system with space group P21/c, Z=2. The octahedral Ni(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate ina ligands through the ring nitrogen and four aqua ligands to form discrete [Ni(ina)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bands. The magnetic environment of copper(II) doped NINS crystal has also been identified by electron paramagnetic resonance (EPR) technique. The g and A values of Cu2+ doped NINS single crystal were calculated from the EPR spectra recorded in three mutually perpendicular planes. These values indicated that the paramagnetic centre has a rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The complex exhibits only metal centred electroactivity in the potential range of −2.00, 1.25 V versus Ag/AgCl reference electrode.  相似文献   

20.
We consider the shape of the magnetic Compton profile (MCP), Jmag(pz), in La1.2Sr1.8Mn2O7 for momentum transfer pz along the [110] direction and the associated reciprocal form factor B(r) defined by taking the one-dimensional Fourier transform of Jmag(pz). B(r) is shown to contain a prominent dip at r≈1 Å, where the minimum value Bmin of B(r) can be related to the occupancies of the eg orbitals of dx2y2 and d3z2r2 symmetry in the system. We illustrate our procedure in detail by analyzing the measured MCP at 5 K and the MCP computed within the framework of the local spin density approximation (LSDA) and comment on the differences between the measured and computed eg occupancies as a reflection of the limitations of the LSDA in treating electron correlation effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号