首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the shot noise affected by the perturbation of two microwave fields (MWFs) with frequencies ω1 and ω2, which can be classified as the commensurate and incommensurate external ac fields. The time-dependent current correlation function and the spectral density of shot noise have been obtained. They are very different compared with the single-field applied system in the nonlinear regime of the ac potentials. The different photon absorption and emission processes induce different kinds of noise spectral density. We have performed the numerical calculations for both commensurate balanced and unbalanced photon absorptions and emissions. The multi-photon procedure can be seen clearly from the resonance of shot noise. Different commensurate number q = ω21 contributes to different photon absorption and emission behaviors. It is found that the asymmetric configuration of shot noise is intimately associated with the commensurate number q. The differential conductance appears symmetric and asymmetric behaviors, and the channel blockade exhibits. The shot noise is large enough to surpass its saturated value for the unbalanced photon absorption case. The sensitive behaviors of Fano factor associated with different commensurate numbers and amplitudes of ac fields signify that the shot noise can be controlled by external MWFs significantly.  相似文献   

2.
We study the quantum Fisher information (QFI) of W states in the basic decoherence channels. We show that, as decoherence starts and increases, under i) depolarizing, QFI smoothly decays; ii) amplitude damping, QFI first exhibits a sudden drop to the shot noise level, then decreases to zero and finally increases back to the shot noise level; iii) phase damping, QFI is zero for all non-zero decoherence. We also find that on the contrary to GHZ states, QFI of W states in x and y directions are equal to each other and zero in z direction.  相似文献   

3.
We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor (L) and the spin relaxation length (l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.  相似文献   

4.
We have investigated the shot noises of charge and spin current by considering the spin polarized electron tunneling through a ferromagnet-quantum-dot-ferromagnet system. We have derived the spin polarized current noise matrix, from which we can derive general expressions of shot noises associated with charge and spin currents. The spin and charge currents are intimately related to the polarization angles, and they behave quite differently from each other. The shot noise of charge current is symmetric about the gate voltage whose structure is modified by the Zeeman field considerably. There exists oscillations in spin current shot noise in the absence of source-drain bias at zero temperature, and it is asymmetric in the positive and negative regimes of sourcedrain voltage. The shot noise of spin current behaves quite differently from the shot noise of charge current, since the spin current components I x s , I y s oscillate sinusoidally with the frequency ωγ in the γth lead, while the I z s component of spin current is independent of time.   相似文献   

5.
Qiao Chen 《Physics letters. A》2008,372(15):2714-2719
We have investigated the spectral density of shot noise of the system with a quantum dot (QD) coupled to two single-wall carbon nanotube terminals, where a rotating magnetic field is applied to the QD. The carbon nanotube (CN) terminals act as quantum wires which open quantum channels for electrons to transport through. The shot noise and differential shot noise exhibit novel behaviors originated from the quantum nature of CNs. The shot noise is sensitively dependent on the rotating magnetic field, and the differential shot noise exhibits asymmetric behavior versus source-drain bias and gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula. The super-Poissonian and sub-Poissonian shot noise can be achieved in different regime of source-drain bias.  相似文献   

6.
We have investigated the spectral density of shot noise for an ultra-small quantum dot(QD) system in the Coulomb blockade regime when irradiated with microwave fields (MWFs) by employing a nonequilibrium Green’s function technique. The shot noise is sensitive to Coulomb interaction, and the photon-assisted Coulomb blockade behaviour strongly modifies the mesoscopic transport. We have calculated the first and second derivatives of shot noise in the strong and weak coupling regimes to compare the theoretical results with existing experimental results. In the strong coupling regime, the first and second derivatives of shot noise display Fano type peak-valley structures around the charging channel 2E c due to Coulomb interaction. When the magnitudes of the MWFs are sufficiently large, the system displays channel blockade due to photon irradiation. The photon-assisted and Coulomb blockade steps in the noise — as well as the resonant behaviour in the differential noise — are smeared by increasing temperature. The Coulomb interaction suppresses the shot noise, but the ac fields can either suppress the shot noise(balanced case) or enhance the shot noise(unbalanced case). The suppression of shot noise caused by ac fields in the balanced case is greater than that caused by Coulomb interaction in our system. Super-Poissonian shot noise may be induced due to the compound effects of strong Coulomb interaction and photon absorption-emission processes.  相似文献   

7.
We have performed noise measurements on suspended ropes of single wall carbon nanotubes (SWNT) between 1 and 300 K for different values of dc current through the ropes. We find that the shot noise is suppressed by more than a factor 100 compared to the full shot noise 2eI. We have also measured an individual SWNT and found a level of noise which is smaller than the minimum expected. Another finding is the very low level of 1/f noise, which is significantly lower than previous observations. We propose two possible interpretations for the strong shot noise reduction: i) Transport within a rope takes place through few nearly ballistic tubes within a rope and possibly involves non integer effective charges with e *∼ 0.3e. ii) A substantial fraction of the tubes conduct with a strong reduction of effective charge (by more than a factor 50). Received 25 January 2002 Published online 19 July 2002  相似文献   

8.
In this paper we investigate the joint effects of the electron-phonon interaction and an external alternating (ac) gate voltage on the spectral density of shot noise through a vibrating quantum dot system, by applying the Lang-Firsov canonical transformation and the Keldysh nonequilibrium Green's function (NGF) technique. We find that the effects of the electron-phonon and electron-photon interaction on the differential shot noise are different. The main resonant peak of the differential shot noise is decreased only when a time-dependent gate voltage is imposed on quantum dot. With the ac field amplitude increasing, the main resonant peak of the differential shot noise decreases. The Fano factor of the system, which exhibits the deviation of shot noise from the Schottky formula, is also studied. Super-Poissonian shot noise appears due to the photon absorption (emission) processes in the low bias voltage region.  相似文献   

9.
We have investigated the spectral density of shot noise for the system of a quantum dot (QD) coupled to two single-wall carbon nanotube terminals irradiated with a microwave field on the QD. The terminal features are involved in the shot noise through modifying the self-energy of QD. The contributions of carbon nanotube terminals to the shot noise exhibit obvious behaviors. The novel side peaks are associated with the photon absorption and emission procedure accompanying the suppression of shot noise. The shot noise in balanced absorption belongs to sub-Poissonian, and it is symmetric with respect to the gate voltage. The differential shot noise displays intimate relation with the nature of carbon nanotubes and the applied microwave field. It exhibits asymmetric behavior for the unbalanced absorption case versus gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula, and the structures of terminals obviously contribute to it. The super-Poissonian and sub-Poissonian shot noise can be achieved in the unbalanced absorption in different regime of source-drain bias.  相似文献   

10.
We study the full counting statistics (FCS) in a single-molecule magnet (SMM) with finite Coulomb interaction U. For finite U the FCS, differing from U→∞, shows a symmetric gate-voltage-dependence when the coupling strengths with two electrodes are interchanged, which can be observed experimentally just by reversing the bias-voltage. Moreover, we find that the effect of finite U on shot noise depends on the internal level structure of the SMM and the coupling asymmetry of the SMM with two electrodes as well. When the coupling of the SMM with the incident-electrode is stronger than that with the outgoing-electrode, the super-Poissonian shot noise in the sequential tunneling regime appears under relatively small gate-voltage and relatively large finite U, and dose not for U→∞; while it occurs at relatively large gate-voltage for the opposite coupling case. The formation mechanism of super-Poissonian shot noise can be qualitatively attributed to the competition between fast and slow transport channels.  相似文献   

11.
The population noise in a semiconductor laser is calculated by means of the quantum mechanical Langevin method. The resulting population noise is given by 〈δ N c 2 〉=(T c/2) (rate in+rate out)+K(¯n), whereN c is the total number of electrons in the conduction band in the active region,T c is a relaxation time. The first expression is the usual shot noise term. The transition rates are the sum of the rates due to the light field, the pumping and the spontaneous emission. The last termK(¯ n) is caused by the light field fluctuations;¯n is the mean number of photons in the laser mode.K(¯ n) consists of two parts: a) The main part is proportional to the intensity noise of the light field, which increases below but near threshold and gets constant above threshold. b) There is a second term due to the fact that parts of the fluctuations of the population and of the light field are correlated. — The noise spectrumS I(ω) of the junction currentI is calculated for low frequencies. Beyond the usual shot noise termS I(0)=2eI, additional noise is found in and above the threshold region, a) mainly because of the fluctuations of the light field in the laser mode and b) to a small amount, because the absorption processes due to the laser photons weaken the forward current, which is carried by emission processes, while the absorption noise adds to the emission noise.  相似文献   

12.
We show that the time-dependent nonlinear wave equation in closed-circuit photovoltaic media can exhibit quasi-steady-state and steady-state spatial solitons. We demonstrate that the formation time of open-circuit quasi-steady-state and open-circuit steady-state dark solitons decreases with an increase in the intensity ratio of the soliton, which is the ratio between the soliton peak intensity and the dark irradiance. We find that for the time-dependent nonlinear wave equation that exhibits only an open-circuit steady-state dark soliton, changing the electric current density J0 does not generate quasi-steady-state dark solitons and affects the formation time of steady-state dark solitons and that for the time-dependent nonlinear wave equation that exhibits an open-circuit quasi-steady-state dark soliton, changing J0 gives rise to three different time evolution regimes of the full width half maximum of the soliton’s intensity. The first regime shows that the formation time of steady-state dark solitons increases with J0 whereas the formation time of quasi-steady-state dark solitons is independent of J0. The second regime shows that the formation time of steady-state dark solitons decreases with an increases in J0 and the formation time of quasi-steady-state dark solitons increases with J0. The third regime shows that changing J0 enables only steady-state dark solitons in the time-dependent nonlinear wave equation, of which the formation time increases with J0.  相似文献   

13.
Experimentally observed features of the electrical and noise characteristics of bicrystal junctions of cuprate superconductors, such as linearity of the critical current density versus square root of the junction transparency and increase in the spectral density of shot noise for small bias voltages (below the superconducting gap), indicate that the superconducting current in cuprate bicrystal junctions is determined by the passage of quasi-particles through a potential barrier at the superconductor boundaries. This process involves bound states appearing as a result of multiple Andreev reflections in superconductors with dominant wavefunction components of the d x 2 ? y 2 symmetry type. At the same time, interpretation of the experimental current-phase and current-magnetic field curves requires that the character of faceting at the bicrystal junctions would be also taken into account.  相似文献   

14.
The potentialities of pulse-amplitude analysis for noise measurements are demonstrated with p +-n silicon detectors. It is suggested to use the detector current as a parameter and vary it by illuminating the samples. The instrument was calibrated by the shot noise of the photocurrent. The criteria for shot noise are the linearity of the noise squared vs. current dependence and its slope. It is shown that conventional instrumentation for pulse-amplitude analysis provides accurate yet rapid noise investigation. For the detectors studied, flicker noise was absent even when the trapped charge in the field oxide increases by one order of magnitude.  相似文献   

15.
We studied the electronic transport properties of a T-shaped double-quantum-dot system in the Coulomb blockade regime when the onsite Coulomb interaction parameters U 1 and U 2 have finite values in both component dots. Our analysis is done in the so-called beyond Hartree-Fock approximation that includes contributions related to both normal and mixed averages of various number-like operators in the system. We provide an analytic formula for the main’s dot Green function in the case of large onsite Coulomb interaction parameters (U 1 = U 2 → ∞), and find that with a good approximation, this limit is realized when the ratio U 1/t = U 2/t ≥ 30, t being the interdot electron tunneling between the two component dots of the structures. In the most general situation of the Coulomb blockade regime (U 1U 2) the system conductivity presents two dips corresponding to the Fano-Kondo effect and the system’s shot noise and electronic current present a series of plateaus that should be visible in experimental setups.  相似文献   

16.
The shot noise of a hybrid triple-quantum-dot (TQD) interferometer has been investigated by employing the nonequilibrium Green's function method, and the general shot noise formula has been derived. The oscillation behaviors of transmission coefficients and shot noise versus the Aharonov–Bohm phase ?   exhibit asymmetric Fano resonance structure and blockade effect. Sub-Poissonian and super-Poissonian behaviors of shot noise appear in different regimes of terminal bias eVγeVγ contributed by the Andreev reflection, and correlation of Andreev tunneling with the normal electron transport. The inverse resonance and resonance structures emerge in the shot noise and Fano factor with respect to one of the gate voltages in different regimes of eVγeVγ. The asymmetric structure can be enhanced by modifying the energy levels and gate biases of the TQD. The self-correlation and cross-correlation of current components contribute to the enhancement and suppression of shot noise.  相似文献   

17.
We have studied the magnetocaloric effect (MCE) in a bilayered La4/3Sr5/3Mn2O7 single crystal with applied field along both ab-plane and c-direction. Due to the quasi-two-dimensional structure, the crystal exhibits a strong anisotropy in the MCE. The difference of magnetic entropy change between two crystallographic directions depends on external magnetic fields and has a maximum of 2 J/kg K. A large low-field magnetic entropy change, reaching 3.2 J/kg K for a magnetic field change of 15 kOe, is observed when the applied field is along ab-plane. This large low-field magnetic entropy change is attributed to the rapid change of magnetization in response to external magnetic fields in the easy magnetizing plane.  相似文献   

18.
An in-field magnetic force microscopy (MFM) observation technology was introduced to study media noise in perpendicular recording medium. Magnetization reversal field (HR) distribution of the recording medium could be mapped by this technology. We have extracted media noise signal image from recording pattern. The noise signal image was converted to a contour image, in which peak areas represented high-noise areas. To clarify the relationship between HR distribution and the media noise, we novelly combined the contour with the HR-map. The results show that the media noise mostly gets generated in the lower-HR areas, which indicates the lower-HR area is one of the important origins of the media noise. For comparison, a simulation work was also performed by introducing a model based on experimental parameters. The simulation agreed with experimental results very well.  相似文献   

19.
We have investigated CoNiFe and CoNiFe–C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co59.4Fe27.7Ni12.8 show coercivity of 95 A m−1 (1.2 Oe) and magnetization saturation flux (μ0Ms) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μr′ ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe–C, which have resistivity and permeability of 85, 38 μΩ cm, μr′=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe–C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency.  相似文献   

20.
We report the ac electrical response of La0.7Sr0.3Mn1−xFexO3(x=0.05) as a function of temperature, magnetic field (H) and frequency of radio frequency (rf) current (). The ac impedance (Z) was measured while rf current directly passes through the sample as well as in a coil surrounding the sample. It is found that with increasing frequency of the rf current, Z(T) shows an abrupt increase accompanied by a peak at the ferromagnetic Curie temperature. The peak decreases in magnitude and shifts down with increasing value of H. We find a magnetoimpedance of for at around room temperature when the rf current flows directly through the sample and when the rf current flows through a coil surrounding the sample. It is suggested that the magnetoimpedance observed is a consequence of suppression of transverse permeability which enhances skin depth for current flow. Our results indicate that the magnetic field control of high frequency impedance of manganites is more useful than direct current magnetoresistance for low-field applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号