首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, Weisner’s group-theoretic method of obtaining generating functions is utilized in the study of Jacobi polynomialsP> n (a,ß)(x) by giving suitable interpretations to the index (n) and the parameter (β) to find out the elements for constructing a six-dimensional Lie algebra.  相似文献   

2.
In this paper we show the equivalence between Goldman-Rota q-binomial identity and its inverse. We may specialize the value of the parameters in the generating functions of Rogers-Szegö polynomials to obtain some classical results such as Euler identities and the relation between classical and homogeneous Rogers-Szegö polynomials. We give a new formula for the homogeneous Rogers-Szegö polynomials hn(x,y|q). We introduce a q-difference operator θxy on functions in two variables which turn out to be suitable for dealing with the homogeneous form of the q-binomial identity. By using this operator, we got the identity obtained by Chen et al. [W.Y.C. Chen, A.M. Fu, B. Zhang, The homogeneous q-difference operator, Advances in Applied Mathematics 31 (2003) 659-668, Eq. (2.10)] which they used it to derive many important identities. We also obtain the q-Leibniz formula for this operator. Finally, we introduce a new polynomials sn(x,y;b|q) and derive their generating function by using the new homogeneous q-shift operator L(bθxy).  相似文献   

3.
In this paper, we introduce the generalized q-Bernstein polynomials based on the q-integers and we study approximation properties of these operators. In special case, we obtain Stancu operators or Phillips polynomials.  相似文献   

4.
A classical result on the expansion of an analytic function in a series of Jacobi polynomials is extended to a class of q-orthogonal polynomials containing the fundamental Askey–Wilson polynomials and their special cases. The function to be expanded has to be analytic inside an ellipse in the complex plane with foci at ±1. Some examples of explicit expansions are discussed.   相似文献   

5.
In this paper, we consider the modified q-Bernstein polynomials for functions of several variables on q-Volkenborn integral and investigate some new interesting properties of these polynomials related to q-Stirling numbers, Hermite polynomials and Carlitz’s type q-Bernoulli numbers.  相似文献   

6.
Almost four decades ago, Konhauser introduced and studied a pair of biorthogonal polynomials
  相似文献   

7.
Almost four decades ago, H.M. Srivastava considered a general family of univariate polynomials, the Srivastava polynomials, and initiated a systematic investigation for this family [10]. In 2001, B. González, J. Matera and H.M. Srivastava extended the Srivastava polynomials by inserting one more parameter [4]. In this study we obtain a family of linear generating functions for these extended polynomials. Some illustrative results including Jacobi, Laguerre and Bessel polynomials are also presented. Furthermore, mixed multilateral and multilinear generating functions are derived for these polynomials.  相似文献   

8.
This contribution deals with multiple orthogonal polynomials of type II with respect to q-discrete measures (q-Hahn measures). In addition, we show that this family of multiple orthogonal polynomials has a lowering operator, and raising operators, as well as a Rodrigues type formula. The combination of lowering and raising operators leads to a third order q-difference equation when two orthogonality conditions are considered. An explicit expression of this q-difference equation will be given. Indeed, this q-difference equation relates polynomials with a given degree evaluated at four consecutive non-uniformed distributed points, which makes these polynomials interesting from the point of view of bispectral problems.  相似文献   

9.
Recently, Srivastava, Özarslan and Kaanoglu have introduced certain families of three and two variable polynomials, which include Lagrange and Lagrange-Hermite polynomials, and obtained families of two-sided linear generating functions between these families [H.M. Srivastava, M.A. Özarslan, C. Kaanoglu, Some families of generating functions for a certain class of three-variable polynomials, Integr. Transform. Spec. Funct. iFirst (2010) 1-12]. The main object of this investigation is to obtain new two-sided linear generating functions between these families by applying certain hypergeometric transformations. Furthermore, more general families of bilinear, bilateral, multilateral finite series relationships and generating functions are presented for them.  相似文献   

10.
A special case of the big q-Jacobi polynomials Pn(x;a,b,c;q), which corresponds to a=b=−c, is shown to satisfy a discrete orthogonality relation for imaginary values of the parameter a (outside of its commonly known domain 0<a<q−1). Since Pn(x;qα,qα,−qα;q) tend to Gegenbauer (or ultraspherical) polynomials in the limit as q→1, this family represents another q-extension of these classical polynomials, different from the continuous q-ultraspherical polynomials of Rogers. For a dual family with respect to the polynomials Pn(x;a,a,−a;q) (i.e., for dual discrete q-ultraspherical polynomials) we also find new orthogonality relations with extremal measures.  相似文献   

11.
Using a general q-summation formula, we derive a generating function for the q-Hahn polynomials, which is used to give a complete proof of the orthogonality relation for the continuous q-Hahn polynomials. A new proof of the orthogonality relation for the big q-Jacobi polynomials is also given. A simple evaluation of the Nassrallah–Rahman integral is derived by using this summation formula. A new q-beta integral formula is established, which includes the Nassrallah–Rahman integral as a special case. The q-summation formula also allows us to recover several strange q-series identities.  相似文献   

12.
We study the operator monotonicity of the inverse of every polynomial with a positive leading coefficient. Let be a sequence of orthonormal polynomials and the restriction of to , where is the maximum zero of . Then and the composite are operator monotone on . Furthermore, for every polynomial with a positive leading coefficient there is a real number so that the inverse function of defined on is semi-operator monotone, that is, for matrices , implies

  相似文献   


13.
We show some results for the q-Bernoulli and q-Euler polynomials. The formulas in series of the Carlitz's q-Stirling numbers of the second kind are also considered. The q-analogues of well-known formulas are derived from these results.  相似文献   

14.
In a recent contribution [N.M. Atakishiyev, A.U. Klimyk, On discrete q-ultraspherical polynomials and their duals, J. Math. Anal. Appl. 306 (2005) 637-645], the so-named discrete q-ultraspherical polynomials were introduced as a specialization of the big q-Jacobi polynomials, and their orthogonality established for values of the parameter outside its commonly known domain but inside the range of validity of the conditions of Favard's theorem. In this paper we consider both the continuous and the discrete q-ultraspherical polynomials and we prove that their orthogonality is guaranteed for the whole range of the allowed parameters, even in those intriguing cases in which the three term recurrence relation breaks down. The presence of either the Askey-Wilson divided difference operator (in the continuous case), or the q-derivative operator (in the discrete one), provides the q-Sobolev character of the non-standard inner products introduced in our approach.  相似文献   

15.
For each the nth Laguerre polynomial has an m-fold zero at the origin when α=−m. As the real variable α→−m, it has m simple complex zeros which approach 0 in a symmetric way. This symmetry leads to a finite value for the limit of the sum of the reciprocals of these zeros. There is a similar property for the zeros of the q-Laguerre polynomials and of the Jacobi polynomials and similar results hold for sums of other negative integer powers.  相似文献   

16.
The classical Levy-Meixner polynomials are distinguished through the special forms of their generating functions. In fact, they are completely determined by 4 parameters: c1, c2,γ and β. In this paper, for-1 〈q〈 1, we obtain a unified explicit form of q-deformed Levy-Meixner polynomials and their generating functions in term of c1, c2, γand β, which is shown to be a reasonable interpolation between classical case (q=1) and fermionic case (q=-1).In particular, when q=0 it's also compatible with the free case.  相似文献   

17.
We derive discrete orthogonality relations for polynomials, dual to little and big q-Jacobi polynomials. This derivation essentially requires use of bases, consisting of eigenvectors of certain self-adjoint operators, which are representable by a Jacobi matrix. Recurrence relations for these polynomials are also given.  相似文献   

18.
The q-classical orthogonal polynomials of the q-Hahn Tableau are characterized from their orthogonality condition and by a first and a second structure relation. Unfortunately, for the q-semiclassical orthogonal polynomials (a generalization of the classical ones) we find only in the literature the first structure relation. In this paper, a second structure relation is deduced. In particular, by means of a general finite-type relation between a q-semiclassical polynomial sequence and the sequence of its q-differences such a structure relation is obtained.  相似文献   

19.
Recently, we introduced a class of generalized hypergeometric functionsI n:(b q)/α:(a p) (x, w) by using a difference operator Δ x,w , where . In this paper an attempt has been made to obtain some bilateral generating relations associated withI n ga (x, w). Each result is followed by its applications to the classical orthogonal polynomials.  相似文献   

20.
The paper aims to investigate the convergence of the q  -Bernstein polynomials Bn,q(f;x)Bn,q(f;x) attached to rational functions in the case q>1q>1. The problem reduces to that for the partial fractions (x−α)−j(xα)j, j∈NjN. The already available results deal with cases, where either the pole α   is simple or α≠q−mαqm, m∈N0mN0. Consequently, the present work is focused on the polynomials Bn,q(f;x)Bn,q(f;x) for the functions of the form f(x)=(x−q−m)−jf(x)=(xqm)j with j?2j?2. For such functions, it is proved that the interval of convergence of {Bn,q(f;x)}{Bn,q(f;x)} depends not only on the location, but also on the multiplicity of the pole – a phenomenon which has not been considered previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号