首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential–Linear Augment Plane Wave method (FP–LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson’s ratio, Young’s modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.  相似文献   

2.
We have studied some structural, thermodynamic, elastic, and electronic properties of pyrite-type SnO2 polymorph by performing ab initio calculations within the LDA approximation. The basic physical properties, in particular lattice constant, bulk modulus, second-order elastic constants (Cij), and the electronic structure, are calculated, and compared with the available experimental data. In order to gain some further information on the mechanical properties, we have also calculated the Young's modulus, Poison's ratio (ν), anisotropy factor (A), sound velocities, and Debye temperature for the same compound.  相似文献   

3.
We have performed the first principles calculation by using the plane-wave pseudopotential approach with the generalized gradient approximation for investigating the structural, electronic, and elastic properties Na-As systems (NaAs in NaP, LiAs and AuCu-type structures, NaAs2 in MgCu2-type structure, Na3As in Na3As, Cu3P and Li3Bi-type structures, and Na5As4 in A5B4-type structure). The lattice parameters, cohesive energy, formation energy, bulk modulus, and the first derivative of bulk modulus (to fit to Murnaghan’s equation of state) of the related structures are calculated. The second-order elastic constants and the other related quantities such as Young’s modulus, shear modulus, Poisson’s ratio, sound velocities, and Debye temperature are also estimated.  相似文献   

4.
First principle calculations of elastic properties under pressure of the filled tetrahedral semiconductors LiZnN, LiZnP and LiZnAs are presented, using the pseudo-potential plane-waves approach based on density functional theory, within the local density approximation. Elastic constants, bulk modulus, Young’s modulus and Poisson’s ratio are calculated at zero pressure. A linear dependence of the bulk modulus and elastic constants with applied pressure is found. As the experimental elastic constants are not available for LiZnX, we have also calculated the elastic constants of GaN, GaP and GaAs, the binary analogues of LiZnN, LiZnP and LiZnAs, respectively, for checking the reliability and accuracy of our predicted results for LiZnX. The obtained results agree well with the available experimental data.  相似文献   

5.
Structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC are studied by means of a pseudo-potential plane-wave method based on the density functional theory. The optimized zero pressure geometrical parameters are in good agreement with the available theoretical data. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contractions along the c-axis were higher than those along the a-axis. The elastic constants Cij and elastic wave velocities are calculated for monocrystal Nb2SiC. Numerical estimations of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature for ideal polycrystalline Nb2SiC aggregates are performed in the framework of the Voigt-Reuss-Hill approximation. The band structure shows that Nb2SiC is an electrical conductor. The analysis of the atomic site projected densities and the charge density distribution shows that the bonding is of covalent-ionic nature with the presence of metallic character. The density of states at Fermi level is dictated by the niobium d states; Si element has a little effect. Thermal effects on some macroscopic properties of Nb2SiC are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the primitive cell volume, volume expansion coefficient, bulk modulus, heat capacity and Debye temperature with pressure and temperature in the ranges of 0-40 GPa and 0-2000 K are obtained successfully.  相似文献   

6.
The structural, mechanical, electronic and optical properties of orthorhombic PtSi and PtGe were investigated using norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory. The calculated lattice parameters and bulk modulus for PtSi and PtGe have been compared with the experimental and theoretical values. The second-order elastic constants were calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities and Debye temperature have also been estimated. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valance electrons and the effective optical dielectric constant were calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data.  相似文献   

7.
Detailed ab initio calculations of the structural, electronic, optical and elastic properties of CsCaBr3, CsGeBr3 and CsSnBr3 crystals are presented in this paper. Based on the obtained results, CsCaBr3 is characterized as a dielectric with an indirect band gap, whereas CsGeBr3 and CsSnBr3 are semiconductors with very narrow direct band gaps. The first theoretical estimations of the refractive indexes for all compounds are reported. Variations of the electron density difference distribution induced by changes of the second cation were analyzed and related to the type of chemical bonding between atoms. In addition, the complete set of elastic parameters (which includes the elastic constants, elastic compliance constants, bulk and Young’s moduli, elastic anisotropy) was obtained. Directional anisotropy of elastic properties was visualized; the directions in the crystal lattices, along which the maximal and minimal values of the Young’s moduli are realized, were identified.  相似文献   

8.
We have investigated the structural, elastic and electronic properties of the anti-perovskite TlNCa3 using ab initio calculations within the generalized gradient approximation and the local density approximation for the exchange–correlation potential. The lattice constant, bulk modulus, elastic constants and their pressure dependence, energy band structures, density of states and charge density distribution are calculated and analyzed in comparison with the available experimental and theoretical data. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, Lamé’s coefficients, average sound velocity and Debye temperature are numerically estimated for ideal polycrystalline TlNCa3 aggregates in the framework of the Voigt–Reuss–Hill approximation. This is the first theoretical prediction of the elastic constants and their related properties for TlNCa3 that requires experimental confirmation.  相似文献   

9.
In this work, we have extended our study of the mechanical properties and the electronic structure of PbTe to include other Pb chalcogenide compounds (PbSe, PbS). The calculations were performed self-consistently using the scalar-relativistic full-potential linearized augmented plane wave method. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) to density-functional theory were applied.The equilibrium lattice constants and the bulk modulus of a number of structures (NaCl, CsCl, ZnS) were calculated as well as the elastic constants for the structures (NaCl, CsCl). The NaCl structure is found to be the most stable one among all the three phases considered. We have found that the GGA predicts the elastic constants in good agreement with experimental data.Both the LDA and GGA were successful in predicting the location of the band gap at the L point of the Brillouin zone but they are inconclusive regarding the value of the band-gap width. To resolve the issue of the gap, we performed Slater-Koster (SK) tight-binding calculations, including the spin-orbit coupling in the SK Hamiltonian. The SK results that are based on our GGA calculations give the best agreement with experiment.Results are reported for the pressure dependence of the energy gap of these compounds in the NaCl structure. The pressure variation of the energy gap indicates a transition to a metallic phase at high pressure. Band structure calculations in the CsCl structure show a metallic state for all compounds. The electronic band structure in the ZnS phase shows an indirect band gap at the W and X point of the Brillouin zone.  相似文献   

10.
The structural properties, elastic properties and electronic structures of hexagonal Al3RE intermetallic compounds are calculated by using first-principles calculations based on density functional theory. Since there exists strong on-site Coulomb repulsion between the highly localized 4f electrons of RE atoms, we present a combination of the GGA and the LSDA+U approaches in order to obtain the appropriate results. The GGA calculated lattice constants for the hexagonal Al3RE intermetallic compounds are in good agreement with available experimental values. The results of cohesive energy indicate that these compounds can be stable under absolute zero Kelvin and the stability of Al3Gd is the strongest in all of the hexagonal Al3RE compounds. The densities of states for GGA and LSDA+U approaches are also obtained for the Al3RE intermetallic compounds. The mechanical properties are calculated from the GGA method in this paper. According to the computed single crystal elastic constants, Al3La, Al3Sm and Al3Gd are mechanically unstable, while Al3Ce, Al3Pr and Al3Nd are stable. The polycrystalline elastic modulus and Poisson’s ratio have been deduced by using Voigt-Reuss-Hill (VRH) approximations, and the calculated ratio of bulk modulus to shear modulus indicates that Al3La compound is ductile material, but Al3Ce, Al3Pr, Al3Nd, Al3Sm and Al3Gd are brittle materials.  相似文献   

11.
The lattice constants, enthalpies of formation, elastic constants and electronic structures of Al-Sr intermetallics have been calculated by first-principles method within generalized gradient approximation. The calculated lattice constants and enthalpies of formation are in good agreement with experimental and other theoretical results. The polycrystalline bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are also estimated from the calculated single crystalline elastic constants. The total and partial electronic densities of state for the intermetallics were obtained, and the results indicated that Al2Sr-oI is more stable than Al2Sr-cF. Finally, longitudinal, transverse and average sound velocities and Debye temperature are estimated.  相似文献   

12.
The structural, elastic, electronic, optical and thermal properties of α phase in LiBeN semiconductor have been studied using pseudo-potential plane wave method based on the density functional theory. The computed lattice parameter agrees well with previous theoretical work. The elastic constants and their pressure dependence are predicted using the static finite strain technique. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature are numerically estimated in the frame work of the Voigt–Reuss–Hill approximation for α-LiBeN polycrystalline aggregate. The assignments of the structures in the optical spectra and band structure transitions have been examined and discussed. The thermal effect on heat capacities is investigated by the quasi-harmonic Debye model. To the best of our knowledge, most of the studied properties of the material of interest are reported for the first time.  相似文献   

13.
The structural, elastic and thermodynamic properties of thorium tetraboride (ThB4) have been investigated by using first-principles plane-wave pseudopotential density functional theory with generalized gradient approximation. The behaviors of structural parameters under 0-70 GPa hydrostatic pressure are studied by means of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) geometry optimization scheme. By using the stress-strain method, single crystal elastic constants are calculated to test the mechanical stability of the crystal structure and to determine mechanical properties such as bulk modulus at each pressure. However, in order to study the thermodynamic properties of ThB4, the quasi-harmonic Debye model is used. Then, the dependencies of bulk modulus, heat capacities, thermal expansions, Grüneisen parameters and Debye temperatures on the temperature and pressure are obtained in the whole pressure range 0-70 GPa and temperature range 0-1500 K.  相似文献   

14.
The structural,elastic,electronic,optical,and vibrational properties of the orthorhombic Pd2Ga compound are investigated using the norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory.The calculated lattice parameters have been compared with the experimental values and found to be in good agreement with these results.The second-order elastic constants and the other relevant quantities,such as the Young’s modulus,shear modulus,Poisson’s ratio,anisotropy factor,sound velocity,and Debye temperature,have been calculated.It is shown that this compound is mechanically stable after analysing the calculated elastic constants.Furthermore,the real and imaginary parts of the dielectric function and the optical constants,such as the optical dielectric constant and the effective number of electrons per unit cell,are calculated and presented.The phonon dispersion curves are derived using the direct method.The present results demonstrate that this compound is dynamically stable.  相似文献   

15.
Structural, electronic, elastic and mechanical properties of Cd and Hg based rare earth intermetallics (RECd and REHg; RE=Sc, La and Yb) have been investigated using the full-potential linearized augmented plane-wave (FP-LAPW) method within the density-functional theory (DFT). The ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) have been obtained using optimization method and are found in good agreement with the available experimental results. The calculated enthalpy of formation shows that LaHg has the strongest alloying ability and structural stability. The electronic band structures and density of states reveal the metallic character of these compounds. The structural stability mechanism is also explained through the electronic structures of these compounds. The chemical bonding between rare earth atoms and Cd, Hg is interpreted by the charge density plots along (1 1 0) direction. The elastic constants are predicted from which all the related mechanical properties like Poisson’s ratio (σ), Young’s modulus (E), shear modulus (GH) and anisotropy factor (A) are calculated. The ductility/brittleness of these intermetallics is predicted. Chen’s method has been used to predict the Vicker’s hardness of RECd and REHg compounds. The pressure variation of the elastic constants is also reported in their B2 phase.  相似文献   

16.
A. Bouhemadou   《Solid State Communications》2009,149(39-40):1658-1662
The structural and elastic properties of perovskite-type RCRh3, with R=Sc, Y, La and Lu, under pressure effects have been investigated using the pseudo-potential plane-wave method based on the density functional theory within the generalized gradient approximation. For monocrystalline RCRh3, the optimized lattice constants, elastic constants and directional elastic wave velocities are calculated and analyzed in comparison with the available experimental and theoretical data. An increase in the lattice constant has been found with increasing atomic size of the R element and a corresponding decrease in the hardness. The anisotropic elastic constants and directional elastic wave velocities increase linearly with increasing pressure. A set of elastic parameters and related properties, namely bulk and shear moduli, Young’s modulus, Poisson’s ratio, Lamé’s coefficients, average sound velocity and Debye temperature are predicted in the framework of the Voigt–Reuss–Hill approximation for polycrystalline RCRh3. We have found that the toughness of RCRh3 compounds can be improved at high pressure.  相似文献   

17.
The structural, elastic and thermal properties of three heavy monoantimonides of holmium, erbium and thulium (LnSb, Ln=Ho, Er and Tm) have been investigated theoretically by using an interionic potential theory consisting of long-range Coulomb, short-range repulsive and van der Waal’s (vdW) interactions. These compounds exhibit first-order crystallographic phase transition from their initial NaCl-type structure to CsCl-type structure at pressures 27, 33.2 and 29.8 GPa for HoSb, ErSb and TmSb, respectively. The values of elastic constants and Debye temperatures as a function of pressure are also reported. The elastic properties such as Young modulus (E), Shear modulus (G), Poisson ratio (υ) and anisotropic ratio (A) in an NaCl-type structure are also predicted.  相似文献   

18.
A first-principles calculations, based on the norm-conserving pseudopotentials and the density functional theory (DFT) and the density functional perturbation theory (DFPT) as implemented in the ABINIT code, have been performed to investigate the structural stability, elastic, lattice dynamic and thermodynamic properties of the ordered SiGe, SiSn and GeSn cubic alloy in zinc-blende (B3) structure. The calculated lattice parameters and bulk modulus agree with the previous results. The second-order elastic constants have been calculated and other related quantities such as the Young’s modulus, shear modulus, anisotropy factor are also estimated. We also obtain the data of lattice dynamics and the temperature dependent properties currently lacking for SiGe, SiSn and GeSn. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as the internal energy, Helmholtz free energy, entropy and heat capacity.  相似文献   

19.
The structural, mechanical, electronic and thermodynamic properties of the tetragonal structure germanium carbonitride (t-GeCN) were first investigated using the density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation and the local density approximation. The elastic constants have confirmed that the t-GeCN is mechanically stable and phonon spectra have confirmed that the t-GeCN is dynamically stable. The anisotropy studies show that t-GeCN exhibits a larger anisotropy in its Poisson's ratio, Young's modulus, shear modulus, sound velocities and universal elastic anisotropy index. Electronic structure study shows that t-GeCN is an indirect semiconductor with band gap of 0.628 eV. The thermodynamic properties of t-GeCN, including Debye temperature, heat capacity, Grüneisen parameter and thermal expansion coefficient are investigated utilizing the quasi-harmonic Debye model.  相似文献   

20.
We present the results of our calculations on Boron antimony (BSb) compound in zinc-blende (ZB) and rock-salt (RS) structures by performing ab initio calculations within the local density approximation (LDA). Some basic physical properties, such as lattice constant, bulk modulus, cohesive energy, phase transition pressure, second-order elastic constants (Cij), phonon frequencies, and some band structural parameters are calculated and compared with those obtained with other recent theoretical works. In order to further understand the behaviour of BSb compound, we have also predicted, the pressure-dependent behaviours of the band gap, second-order elastic constants (Cij), Young's modulus, poison ratios (ν), Anizotropy factor (A), sound velocities, and Debye temperature for this hypothetical compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号