首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cyclin-dependent kinases (CDKs) play a key role in regulating the cell cycle. The cyclins, their activating agents, and endogenous CDK inhibitors are frequently mutated in human cancers, making CDKs interesting targets for cancer chemotherapy. Our aim is the discovery of selective CDK4/cyclin D1 inhibitors. An ATP-competitive pyrazolopyrimidinone CDK inhibitor was identified by HTS and docked into a CDK4 homology model. The resulting binding model was consistent with available SAR and was validated by a subsequent CDK2/inhibitor crystal structure. An iterative cycle of chemistry and modeling led to a 70-fold improvement in potency. Small substituent changes resulted in large CDK4/CDK2 selectivity changes. The modeling revealed that selectivity is largely due to hydrogen-bonded interactions with only two kinase residues. This demonstrates that small differences between enzymes can efficiently be exploited in the design of selective inhibitors.  相似文献   

2.
The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.  相似文献   

3.
CDK2 and CDK4 known promoter of cell cycling catalyze phosphorylation of RB protein. Enzyme specificity between two CDKs that work at a different cell cycle phase is not clearly understood. In order to define kinase properties of CDK2 and CDK4 in complex with cycline A or cycline D1 in relation to their respective role in cell cycling regulation, we examined enzymatic properties of both CDK4/cycline D1 and CDK2/cycline A in vitro. Association constant, Km for ATP in CDK4/cyclin D1 was found as 418 microM, a value unusually high whereas CDK2/cyclin A was 23 microM, a value close to most of other regulatory protein kinases. Turnover value for both CDK4/cyclin D1 and CDK2/cyclin A were estimated as 3.4 and 3.9 min(-1) respectively. Kinetic efficiency estimation indicates far over one order magnitude less efficiency for CDK4/cyclin D1 than the value of CDK2/cycline A (9.3 pM(-1) min(-1) and 170 pM(-1) min(-1) respectively). In addition, inhibition of cellular CDK4 caused increase of cellular levels of ATP, even though inhibition of CDK2 did not change it noticeably. These data suggest cellular CDK4/cyclin D1 activity is tightly associated with cellular ATP concentration. Also, analysis of phosphorylated serine/threonine sites on RB catalyzed by CDK4/cyclin D1 and CDK2/cyclin A showed significant differences in their preference of phosphorylation sites in RB C-terminal domain. Since RB is known to regulate various cellular proteins by binding and this binding is controlled by its phosphorylation, these data shown here clearly indicate significant difference in their biochemical properties between CDK4/cyclin D1 and CDK2/cyclin A affecting regulation of cellular RB function.  相似文献   

4.
5.
The cyclin-dependent kinases (CDKs) have been characterized in complex with a variety of inhibitors, but the majority of structures solved are in the inactive form. We have solved the structures of six inhibitors in both the monomeric CDK2 and binary CDK2/cyclinA complexes and demonstrate that significant differences in ligand binding occur depending on the activation state. The binding mode of two ligands in particular varies substantially in active and inactive CDK2. Furthermore, energetic analysis of CDK2/cyclin/inhibitors demonstrates that a good correlation exists between the in vitro potency and the calculated energies of interaction, but no such relationship exists for CDK2/inhibitor structures. These results confirm that monomeric CDK2 ligand complexes do not fully reflect active conformations, revealing significant implications for inhibitor design while also suggesting that the monomeric CDK2 conformation can be selectively inhibited.  相似文献   

6.
In cell development, the cell cycle is crucial, and the cycle progression’s main controllers are endogenous CDK inhibitors, cyclin-dependent kinases (CDKs), and cyclins. In response to the mitogenic signal, cyclin D is produced and retinoblastoma protein (Rb) is phosphorylated due to activated CDK4/CDK6. This causes various proteins required in the cell cycle progression to be generated. In addition, complexes of CDK1-cyclin A/B, CDK2-cyclin E/A, and CDK4/CDK6-cyclin D are required in each phase of this progression. Cell cycle dysregulation has the ability to lead to cancer. Based on its role in the cell cycle, CDK has become a natural target of anticancer therapy. Therefore, understanding the CDK structures and the complex formed with the drug, helps to foster the development of CDK inhibitors. This development starts from non-selective CDK inhibitors to selective CDK4/CDK6 inhibitors, and these have been applied in clinical cancer treatment. However, these inhibitors currently require further development for various hematologic malignancies and solid tumors, based on the results demonstrated. In drug development, the main strategy is primarily to prevent and asphyxiate drug resistance, thus a determination of specific biomarkers is required to increase the therapy’s effectiveness as well as patient selection suitability in order to avoid therapy failure. This review is expected to serve as a reference for early and advanced-stage researchers in designing new molecules or repurposing existing molecules as CDK4/CDK6 inhibitors to treat breast cancer.  相似文献   

7.
8.
细胞周期蛋白激酶(cyclin-dependent kinases, CDKs)是近年来治疗肿瘤的重要靶标. 由于大多数激酶ATP结合位点的保守性, CDK选择性激酶抑制剂的开发成为当前的研发难点和热点. 针对吲哚咔唑类CDK抑制剂, 我们采用比较分子力场分析方法(CoMFA)建立了CDK2-QSAR(quantitative structure-activity relationship)和CDK4-QSSR(quantitative structure-selectivity relationship)模型. 所建模型的交叉验证系数q2分别为0.722和0.703; 非交叉验证系数r2分别为0.977和0.946, 表明其具有较好的预测能力. 同时, 用分子对接的方法分析了这类化合物与CDK4同源模建结构的作用模式, 根据这两个模型发现, 吲哚咔唑类化合物的R5和R6位长链取代对CDK4的选择性具有一定的影响, 而且结合其作用模式比较合理地解释了这类抑制剂的选择性原因, 这对CDKs的选择性研究具有一定的指导意义.  相似文献   

9.
The design, synthesis and biological activity of a series of non-planar dihydro-beta-carboline and beta-carboline-based derivatives of the toxic anticancer agent fascaplysin is presented. We show these compounds to be selective inhibitors of CDK4 over CDK2 with an IC50 (CDK4-cyclin D1) = 11 micromol for the best compound in the series 4d. The crystallographic analysis of some of the compounds synthesised (3b/d and 4a-d) was carried out, in an effort to estimate the structural similarities between the designed inhibitors and the model compound fascaplysin.  相似文献   

10.
11.
Interests in CDK2 and CDK5 have stemmed mainly from their association with cancer and neuronal migration or differentiation related diseases and the need to design selective inhibitors for these kinases. Molecular dynamics (MD) simulations have not only become a viable approach to drug design because of advances in computer technology but are increasingly an integral part of drug discovery processes. It is common in MD simulations of inhibitor/CDK complexes to exclude the activator of the CDKs in the structural models to keep computational time tractable. In this paper, we present simulation results of CDK2 and CDK5 with roscovitine using models with and without their activators (cyclinA and p25). While p25 was found to induce slight changes in CDK5, the calculations support that cyclinA leads to significant conformational changes near the active site of CDK2. This suggests that detailed and structure-based inhibitor design targeted at these CDKs should employ activator-included models of the kinases. Comparisons between P/CDK2/cyclinA/roscovitine and CDK5/p25/roscovitine complexes reveal differences in the conformations of the glutamine around the active sites, which may be exploited to find highly selective inhibitors with respect to CDK2 and CDK5.  相似文献   

12.
Interest in CDK2 and CDK5 has stemmed mainly from their association with cancer and neuronal migration or differentiation related diseases and the need to design selective inhibitors for these kinases. In the present paper, eight Molecular Dynamics (MD) simulations are carried out to examine the importance of structure and dynamics of water in the active site of both CDK2 and CDK5 complexes with roscovitine and indirubin analogues. Together with previous results, the current work shows a highly conserved water-involved hydrogen bonding (HB) network in both CDK2- and CDK5-indirubin combinations to complete information from the X-ray crystallography. The simulations suggest the importance of such a network for combining the inhibitor to the host protein as well as the significance of using an activated CDK as a template when designing new inhibitors. Different binding patterns of roscovitine in CDK2 and CDK5 are detected during the simulations because of the different binding conformations of the group on the C2 side chain, which might offer a clue toward finding highly selective inhibitors with regards to CDK2 and CDK5.  相似文献   

13.
14.
The cell division cycle is controlled by cyclin-dependent kinases (CDK), which consist of a catalytic subunit (CDK1-CDK8) and a regulatory subunit (cyclin A-H). Pharmacophore analysis indicates that the best inhibitor model consists of (1) two hydrogen bond acceptors, (2) one hydrogen bond donor, and (3) one hydrophobic feature. The HypoRefine pharmacophore model gave an enrichment factor of 1.31 and goodness of fit score of 0.76. Docking studies were carried out to explore the structural requirements for the CDK2-cyclin A inhibitors and to construct highly predictive models for the design of new inhibitors. Docking studies demonstrate the important role of hydrogen bond and hydrophobic interactions in determining the inhibitor-receptor binding affinity. The validated pharmacophore model is further used for retrieving the most active hits/lead from a virtual library of molecules. Subsequently, docking studies were performed on the hits, and novel series of potent leads were suggested based on the interaction energy between CDK2-cyclin A and the putative inhibitors.  相似文献   

15.
The discovery of ATP competitive CDK4 inhibitors is an on-going challenging task in cancer therapy. Here, an attempt has been made to develop new leads targeting ATP binding site of CDK4 by applying 3D-QSAR pharmacophore mapping and molecular docking methods The outcome of 6 leads offers a significant contribution for selective CDK4 inhibition, since they show potential binding interactions with Val96, Arg101, and Glu144 residues of CDK4, that are unique and from other kinases. It is worth noting that there is a striking similarity in binding interactions of the leads and known CDK4 inhibitors, namely Abemaciclib, Palbociclib and Ribociclib. Further key features, including high dock score value, good predicted activity, scaffold diversity, and the acceptable ADME profile of leads, provide a great opportunity for the development of highly potent and selective ATP competitive inhibitors of CDK4.  相似文献   

16.
Examining the potential for electrostatic complementarity between a ligand and a receptor is a useful technique for rational drug design, and can demonstrate how a system prioritizes interactions when allowed to optimize its charge distribution. In this computational study, we implemented the previously developed, continuum solvent-based charge optimization theory with a simple, quadratic programming algorithm and the UHBD Poisson-Boltzmann solver. This method allows one to compute the best set of point charges for a ligand or ligand region based on the ligand and receptor shape, and the receptor partial charges, by optimizing the binding free energy obtained from a continuum-solvent model. We applied charge optimization to a fragment of the heat-stable protein kinase inhibitor (PKI) of protein kinase A (PKA), to three flavopiridol inhibitors of CDK2, and to cyclin A which interacts with CDK2 to regulate the cell cycle. We found that a combination of global (involving every charge) and local (involving only charges in a local region) optimization can give useful hints for designing better inhibitors. Although some parts of an inhibitor may already contribute significantly to binding, we found that they could still be the most important targets for modifications to obtain stronger binders. In studying the binding of flavopiridol inhibitors to CDK2, comparable binding affinity could be obtained regardless of whether the net charges of the inhibitors were constrained to -2, -1, 0, 1, or 2 during the optimization. This provides flexibility in inhibitor design when a certain net charge of the inhibitor is desired in addition to strong binding affinity. For the study of the PKA-PKI and CDK2-cyclin A interfaces, we identified residues whose charge distributions are already close to optimal and those whose charge distributions could be refined to further improve binding.  相似文献   

17.
Cyclin‐dependent kinases 4 and 6 (CDK4/6) are key regulators of the cell cycle, and there are FDA‐approved CDK4/6 inhibitors for treating patients with metastatic breast cancer. However, due to conservation of their ATP‐binding sites, development of selective agents has remained elusive. Here, we report imide‐based degrader molecules capable of degrading both CDK4/6, or selectively degrading either CDK4 or CDK6. We were also able to tune the activity of these molecules against Ikaros (IKZF1) and Aiolos (IKZF3), which are well‐established targets of imide‐based degraders. We found that in mantle cell lymphoma cell lines, combined IKZF1/3 degradation with dual CDK4/6 degradation produced enhanced anti‐proliferative effects compared to CDK4/6 inhibition, CDK4/6 degradation, or IKZF1/3 degradation. In summary, we report here the first compounds capable of inducing selective degradation of CDK4 and CDK6 as tools to pharmacologically dissect their distinct biological functions.  相似文献   

18.
We present the design, synthesis, and biological activity of three classes of tryptamine derivatives, which are non-planar analogues of the toxic anti-cancer agent fascaplysin. We show these compounds to be selective inhibitors of CDK4 over CDK2, the most active compound has an IC50 for the inhibition of CDK4 of 6 microM.  相似文献   

19.
Targeted therapy is currently a hot topic in the fields of cancer research and drug design. An important requirement for this approach is the development of potent and selective inhibitors for the identified target protein. However, current ways to estimate inhibitor efficacy rely on empirical protein–ligand interaction scoring functions which, suffering from their heavy parameterizations, often lead to a low accuracy. In this work, we develop a nonfitting scoring function, which consists of three terms: (1) gas‐phase protein‐ligand binding enthalpy obtained by the eXtended ONIOM hybrid method based on an integration of density functional theory (DFT) methods (XYG3 and ωB97X‐D) and the semiempirical PM6 method, (2) solvation free energy based on DFT‐SMD solvation model, and (3) entropy effect estimated by using DFT frequency analysis. The new scoring function is tested on a cyclin‐dependent kinase 2 (CDK2) inhibitor database including 76 CDK2 protein inhibitors and a p21‐activated kinase 1 (PAK1) inhibitor database including 20 organometallic PAK1 protein inhibitors. From the results, good correlations are found between the calculated scores and the experimental inhibitor efficacies with the square of correlation coefficient R2 of 0.76–0.88. This suggests a good predictive power of this scoring function. To the best of our knowledge, this is the first high level theory‐based nonfitting scoring function with such a good level of performance. This scoring function is recommended to be used in the final screening of lead structure derivatives. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Dimeric glutathione S-transferases (GSTs) are pharmacological targets for several diseases, including cancer. Isoform specificity has been difficult to achieve due to their overlapping substrate selectivity. Here we demonstrate the utility of bivalent GST inhibitors and their optimization via combinatorial linker design. A combinatorial library with dipeptide linkers emanating symmetrically from a central scaffold (bis-3,5-aminomethyl benzoic acid, AMAB) to connect two ethacrynic acid moieties was prepared and decoded via iterative deconvolution, against the isoforms GSTA1-1 and GSTP1-1. The library yielded high affinity GSTA1-1 selective inhibitors (70-120-fold selectivity) and with stoichiometry of one inhibitor: one GSTA1-1 dimer. Saturation Transfer Difference (STD) NMR with one of these inhibitors, with linker structure (Asp-Gly-AMAB-Gly-Asp) and K(D) = 42 nM for GSTA1-1, demonstrates that the Asp-Gly linker interacts tightly with GSTA1-1, but not P1-1. H/D exchange mass spectrometry was used to map the protein binding site and indicates that peptides within the intersubunit cleft and in the substrate binding site are protected by inhibitor from solvent exchange. A model is proposed for the binding orientation of the inhibitor, which is consistent with electrostatic complementarity between the protein cleft and inhibitor linker as the source of isoform selectivity and high affinity. The results demonstrate the utility of combinatorial, or "irrational", linker design for optimizing bivalent inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号