首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dried gel film of ultrahigh-molecular-weight polyethylene (UHMW PE) can be drawn to 370 times its original length at 135°C. Single-crystal mats and dried gel film of UHMW PE develop double orientation despite uniaxial stretching. This is unique for preferentially oriented UHMW PE systems. To elucidate the origin of this single-crystal-like orientation, precursors with different aspect ratios were prepared and drawn uniaxially. The degree of double orientation was measured by infrared spectroscopy. The origin of single-crystal-like orientation seems to reside in the necking region. The stacked lamellar structure is transformed into a fibrillar structure in a two-dimensional fashion. This condition is easily provided when UHMW PE single-crystal mat or dried gel film is drawn uniaxially. A draw ratio of 40 and aspect ratio of 40 are the optimal conditions to obtain a doubly oriented structure from UHMW PE single-crystal mat or gel film at 135°C.  相似文献   

2.
Two kinds of ultrahigh-molecular-weight linear polyethylene (UHMW PE), together with conventional high-density polyethylene (HDPE), were subjected to β irradiation, and changes in their properties were monitored. Elastic modulus increased steadily with dose for all materials, as did the yield stress. A dramatic rise of density with dose was observed in the UHMW PE specimens accompanied by a corresponding increase in heat of fusion, x-ray crystallinity, and peak melting temperature. The magnitude of such changes in HDPE was much smaller. In UHMW PE specimens, the x-ray long period simultaneously decreased but crystal thickness remained constant. No changes in long period occurred in HDPE. The effects are attributed to the scission of tie molecules in UHMW PE followed by a growth in the perfection of the crystal lamellae, and suggest a method for assessing the tie-molecule content of such materials.  相似文献   

3.
The effects of molecular characteristics and processing conditions on melt‐drawing behavior of ultrahigh molecular weight polyethylene (UHMW‐PE) are discussed, based on a combination of in situ X‐ray measurement and stress–strain behavior. The sample films of metallocene‐ and Ziegler‐catalyzed UHMW‐PEs with a similar viscosity average MW of ~107 were prepared by compression molding at 180 °C. Stress profiles recorded at 160 °C above the melting temperature of 135 °C exhibited a plateau stress region for both films. The relative change in the intensities of the amorphous scattering recorded on the equator and on the meridian indicated the orientation of amorphous chains along the draw axis with increasing strain. However, there was a substantial difference in the subsequent crystallization into the hexagonal phase, reflecting the molecular characteristics, that is, MW distribution of each sample film. Rapid crystallization into the hexagonal phase occurred at the beginning point of the plateau stress region in melt‐drawing for metallocene‐catalyzed UHMW‐PE film. In contrast, gradual crystallization into the hexagonal phase occurred at the middle point of the plateau stress region for the Ziegler‐catalyzed film, suggesting an ease of chain slippage during drawing. These results demonstrate that the difference in the MW distribution due to the polymerization catalyst system dominates the phase development mechanism during melt‐drawing. The effect of the processing conditions, that is, the including strain rate and drawing temperature, on the melt‐drawing behavior is also discussed. The obtained results indicate that the traditional temperature–strain rate relationship is effective for transient crystallization in to the hexagonal phase during melt‐drawing, as well as for typically oriented crystallization during ultradrawing in the solid state. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2455–2467, 2006  相似文献   

4.
Retardation of dissolution of highly oriented polyethylene fibers exposed to solvent under a constant tensile force has been investigated in comparison to free conditions. Beyond a critical value of the applied force, the time for dissolution increases sharply by several orders of magnitude. This effect is significant only in fibers with high initial orientation. It is attributed to the existence of a network of oriented crystallites. We have utilized this effect for surface modification of highly oriented PE fibers, by exposure to solvent at different temperatures and applied stress. At a relatively low load the action of the solvent displays pronounced effects: roughening of the fiber surface, formation of a nonoriented crystalline phase, enhancement of adhesion to epoxy resin with some loss of strength. ©1995 John Wiley & Sons, Inc.  相似文献   

5.
The stretching‐induced phase transition from tetragonal Form II to hexagonal Form I and the evolution of corresponding crystallite orientation were studied for the butene‐1/ethylene random copolymer with 1.5 mol % ethylene by using a combination of tensile test and in situ wide‐angle X‐ray diffraction. Three orientation pathways were distinguished for II‐I phase transition, including phase transition accomplishing within off‐axis oriented crystallites (Orientation Pathway 1), phase transition with simultaneous formation of highly oriented crystallites (Orientation Pathway 2), and phase transition occurring within the highly oriented crystallites already formed (Orientation Pathway 3). The kinetics of II‐I transition was correlated with the macroscopic mechanical response, which exhibits a strong dependence on orientation. In Orientation Pathway 1, the triggering of phase transition corresponds to the mechanical yielding. More interestingly, the kinetics of transition exhibits the identical dependence on stress. However, in Orientation Pathways 2 and 3, appearance of the highly oriented crystallites substantially alters transition kinetics, which is tentatively associated with the stress bearing by interstack tie chains. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 116–126  相似文献   

6.
The structure and morphology of homopolymers and blends of rigid-rod poly(p-phenylene benzobisthiazole) (PBT) and semiflexible coil poly[2,5(6)benzimidazole] (ABPBI) were examined by wide-angle x-ray diffraction and scanning and transmission electron microscopy. When samples were processed from a solution where the total polymer concentration of 30% PBT/70% ABPBI blend was greater than a critical concentration, large-scale phase separation occurred and 0.1–4 μm ellipsoidal particles were present in a ductile matrix. The ellipsoids were chiefly composed of aggregates of well-oriented 10-nm PBT crystallites, while the matrix material was chiefly ABPBI. When the concentration was less than a critical concentration, the solution was optically homogeneous. In processing of fiber and film samples from the homogeneous solution, large-scale phase separation was inhibited by rapid coagulation in a water bath. After heat treatment, these samples were found to contain crystallites of both PBT and ABPBI with lateral dimensions of ordered regions no larger than 3 nm. The PBT homopolymer was dispersed in the matrix at the molecular level in ordered regions at a scale no larger than 3 nm, resulting in a rigid-rod molecular composite. In the rigid-rod molecular composite fiber both the molecular-level dispersion and high orientation contributed to higher values of strength and modulus compared to the properties of a phase-separated fiber. The strength and modulus of highly oriented fiber were only 25% higher than those of planar isotropically oriented film, suggesting that the level of dispersion of rod molecules is more important than orientation of the reinforcing phase in rigid-rod molecular composites.  相似文献   

7.
Potential mechanisms for formation of highly organized biomineralized structures include oriented crystal growth on templates, the aggregation of nanocrystals by oriented attachment, and the assembly of inorganic nanoparticles mediated by organic molecules into aggregated structures. In the present study, the potential role of amorphous calcium phosphate (ACP) in facilitating the assembly of hydroxyapatite (HAP) nanoparticles into highly ordered structures was evaluated. The physical characteristics of HAP nanoparticles prepared by three different methods were analyzed after extended exposure to additives in solution. Higher order HAP architecture was detected only when the starting particles were aggregates of nanospheres with HAP cores and ACP shells. Enamel-like HAP architecture was produced when the biologic additive was 10 mM glycine or 1.25 microM amelogenin. Large platelike crystals of the type present in bone were induced when the additive was 10 mM glutamic acid. Surface ACP initially links the HAP nanoparticles in a way that allows parallel orientation of the HAP nanoparticles and then is incorporated into HAP by phase transformation to produce a more highly ordered architecture with features that are characteristic for HAP in biologic structures. These studies provide evidence for a new mechanism for assembly of biominerals in which ACP functions by linking HAP nanocrystals while they assume parallel orientations and then is incorporated by phase transformation into HAP molecules that rigidly link HAP nanocrystals in larger fused crystallites. Biologic molecules present during this process of biomineral assembly specifically regulate the assembly kinetics and determine the structural characteristics of the final HAP architecture.  相似文献   

8.
Melt-spun poly(ethylene terephthalate) fibers were isothermally heat-treated at constant length. Microstructural changes occurring during the heat-treatment were monitored using specific gravity, wide-angle x-ray scattering (WAXS), small-angle x-ray scattering (SAXS), optical birefringence, and static mechanical testing. Major changes in the density of the most highly oriented fiber examined occurred in times below 100 ms. For less oriented fibers, the time scale for significant density change increases to the 1–10 s range. The course of birefringence increase approximates that of the density. WAXS measurements show that crystallinity develops at essentially constant crystal perfection, but that the orientation of the crystallites first decreases and then increases with time. SAXS results show development of a four-point pattern, the azimuthal angle of the lobes decreasing with initial orientation, with temperature, and with time. A streak transverse to the fiber axis develops more rapidly than do the lobes. A two-stage transformation process is envisaged, the first stage being the formation of defective crystal fibrils and the second being internal rearrangement of the fibrils to form more perfect crystallites, separated by more amorphous zones. Changes in the crystallite orientation are related to constraints of the noncrystalline material on the crystallites.  相似文献   

9.
The effect of compaction conditions on UHMWPE fibers is examined by microbeam X‐ray diffraction (WAXS) and scanning electron microscopy (SEM). The morphological observations indicate that melting occurs during compaction both on the surface of the fiber as well as in its internal regions. In addition, the recrystallized phase is nucleated on the fiber surface, possibly epitaxially. The recrystallized phase that originates from the internal regions of the fiber retains the initial highly oriented structure. WAXS microbeam measurements do not show any significant core‐shell structure in compacted single fibers. Considering the overall characteristics of the melting process during compaction, we can conclude that the hexagonal phase that appears upon heating of the fibers under moderate pressure is responsible for good adhesion of the fibers to each other, even more significantly than surface melting, especially because of its ability to retain the high orientation of the chains in the fibers. This information is relevant for understanding the formation and microstructure of the matrix component in the self‐reinforced composites fabricated by compaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1535–1541, 2007  相似文献   

10.
Samples made from linear polyethylene were drawn at room temperature and subsequently annealed at high temperatures below the melting point. The structural changes of the crystalline lamellae and lamellar superstructures as well as the single chain radius of gyration were studied by means of combined small- and wide-angle X-ray scattering and small-angle neutron scattering (SANS). After drawing, the polymeric chain segments in the crystalline phase are preferentially oriented along the drawing direction with a high degree of orientation whereas the lamellae in the samples are found to be slightly sheared exhibiting oblique surfaces as evidenced by X-ray scattering. SANS indicates that the chains are highly elongated along the drawing direction. Annealing the deformed samples at temperatures where the mechanical alpha-process of polyethylene is active leads to a thickening of both crystalline lamellae and amorphous layers. The chains in the crystalline phase retain their high degree of orientation after annealing while the lamellae are sheared to a larger extent. In addition, there is also lateral growth of the crystalline lamellae during high-temperature annealing. Despite the structural changes of the crystalline and amorphous regions, there is no evidence for global chain relaxation. The global anisotropic shape of the chains is preserved even after prolonged annealing at high temperatures. The results indicate that the mobility of polyethylene chains-as seen, e.g., by 13C NMR-is a local phenomenon. The results also yield new insight into mechanical properties of drawn PE, especially regarding stress relaxation and creep mechanisms.  相似文献   

11.
We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 22–38  相似文献   

12.
The pseudophase diagrams of solutions of low molecular weight polyethylene (PE) (number‐average molecular weight < 1500 g/mol) in octamethyl cyclotetrasiloxane (OCTS) and isododecane (IS) were determined by direct observation of cloud points and optical microscopy. In addition, melting temperatures were also determined by differential scanning calorimetry. In the range of single liquid–solid transitions, the data conformed to the classical melting temperature composition relation as a result of the formation of extended crystallites. The melting data were used to determine the interaction parameter of the PE in OCTS (1.4 ± 0.1) and IS (0.22 ± 0.05). The structural and thermal properties of the gels formed by a competing liquid–liquid and liquid–solid phase separation, under nonequilibrium conditions, contrast with the properties of the crystals formed from a single liquid–solid transition. Coarsening within the liquid phases was evidenced by optical microscopy, and insights about the mechanism of the kinetics of the coarsening process are given. The temporal changes of the melting temperature of crystallites formed from the heterogeneous phase (OCTS) reveal dynamics within a nonequilibrium state. In contrast, the crystallites formed from a homogeneous solution (IS) showed negligible melting‐temperature changes with time. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 878–889, 2002  相似文献   

13.
The orientation of crystallites grown isothermally in several drawn trans-polychloroprene networks is studied as a function of crystallization temperature tx, degree of crystallinity ω, and elongation ratio α. The orientation distribution is particularly simple for this polymer since the crystallographic c axis (chain axis) orients preferentially along the stretching direction, while a and b are randomly arranged about c. Hence the parameter cos2 χc adequately characterizes the distribution, where χc is the angle between the c axis and the fiber axis, and the average is taken over all crystallites. A treatment due to Krigbaum and Roe is utilized to obtain values of v (the number of statistical segments comprising the crystallization nucleus of critical size) through comparison of the average orientation of crystallites and amorphous statistical segments. The behavior observed falls into two categories. First, if the initial amorphous network is well oriented, 〈cos2 χc〉 is independent of crystallinity during both crystallization and melting, and v varies with tz (or the degree of supercooling) as predicted by nucleation theory. If different networks are to have the same crystallite orientation distribution, they must not only be crystallized at the same supercooling, but must also have the same distribution of amorphous segment orientations. Both the relative elongation and the network crosslink density affect the latter distribution. Next, we consider the second category. If the initial amorphous orientation is poor, 〈cos2 χc〉 decreases linearly during crystallization and increases along approximately the same path during melting. Further, 〈cos2 χc〉 for a given tz yields v values which are too large. These two behaviors can be explained if, in the former case, nucleation involves the best oriented statistical segments of all network chains, while in the latter there is a selection according to the chain displacement vector orientation. Thus, if the amorphous orientation is poor, both the orientation and thermodynamic stability of the crystallites decreases with further crystallization. If this decreased stability is reflected in shorter fold lengths, the reversible variation of long period spacing with temperature reported earlier for an oriented polychloroprene network can also be explained as a preferential melting process.  相似文献   

14.
Xie  Jia-Yi  Wu  Yong-Shi  Yin  Ze-Feng  Yin  Liang-Dong  Xu  Rui-Jie  Lei  Cai-Hong 《高分子科学》2022,40(4):403-412

Due to the mechanical stability of the PP layer, the oriented PP/PE double-layer film with a row-nucleated crystalline structure can be annealed at a higher temperature than the PE monolayer film. In this work, the effects of annealing temperature within the melting range of PE on the crystalline structure and properties of PP/PE double-layer films were studied. When the annealing temperature is between 100 and 130 °C, below the melting point of PE, the crystallinity, the long period, lateral dimension and orientation of the lamellae in the PE layer increase with the annealing temperature due to the melting of thin lamellae and the self-nucleated effect of partially-melted melts during annealing. With the annealing temperature further increasing to 138 °C, near the melting ending point of PE, since the lamellae melt completely and the melt memory becomes weak during annealing, some spherulite structures are formed in the annealed sample, resulting in a decrease of orientation. In contrast, the annealing only causes the appearance of a low-temperature endothermic plateau in the PP layer. The improved size and orientation of lamellar structure in the PE layer increase the pore arrangement and porosity of the stretched PP/PE microporous membrane. This study successfully applies the self-nucleation effect of partially-melted polymer melt into the practical annealing process, which is helpful to guide the production of high-performance PP/PE/PP lithium batteries separator and the annealing process of other multilayer products.

  相似文献   

15.
张杰  阮杰  闫寿科 《高分子学报》2017,(9):1524-1530
利用电子显微镜结合电子衍射研究了左旋聚乳酸/聚(ε-己内酯)(PLLA/PCL)共混物在取向聚乙烯(PE)基底上的结晶行为.纯PLLA在取向PE基底上能够附生结晶,主要形成分子链相互垂直的片晶结构.PCL在PE基质上也能发生附生结晶,导致两者分子链平行.PLLA/PCL共混物在取向PE基底上结晶的形态结构依赖于共混组成.在PLLA含量大于95 wt%时,PCL不影响PLLA与PE的附生结晶行为.当PCL含量增加至10 wt%时,PLLA在PE上的附生结晶行为受到了一定程度的影响.当PCL含量超过40 wt%时,PLLA在PE上的附生结晶被抑制,取而代之是PCL在PE取向基质上附生结晶,产生两者分子链平行的取向片晶.另外,在PLLA含量在50 wt%~30 wt%之间时,体系产生明显的微相分离,微相分离并不影响PCL与PE的附生结晶,在PCL的富集区仍然发生平行链附生结晶,而PLLA的富集区结构变得模糊.当PLLA含量少于20 wt%时,微相分离不明显,少量PLLA应该分散在PCL片晶间的非晶区.  相似文献   

16.
Summary: The crystalline structure and phase morphology of linear, branched polyethylenes and their blends during crystallization and subsequent melting were investigated, using a combination of differential scanning calorimetry (DSC), and synchrotron small angle X-ray scattering (SAXS). A linear polyethylene (PE1) with weight-average molecular weight (Mw) of 114 000 g/mol, and two branched polyethylene copolymers, containing 4.8 mol% (PE4) and 15.3 mol% (PE10) hexane, with molecular weights of 93 000 g/mol and 46 000 g/mol were used as pure samples. Two blends, PE1-4 and PE1-10, each with a weight ratio of 50/50, were prepared by solution blending. Our results indicate that in PE4 a phase separation within the branched component itself occurred, forming a broad distribution of lamellar thicknesses during the crystallization process. PE10 on the other hand did hardly crystallize because of the high degree of branching. Co-crystallization of both components took place in blend PE1-4 and liquid-liquid phase separation occurred in the melt of PE1-10. Morphological parameters were determined by using Bragg's law and the correlation function, respectively. The detected semicrystalline morphology can be well described by the lamellar insertion mode where thin lamellae develop between thicker primary lamellae. During subsequent heating, lamellae melted in the reversed sequence of their formation. The evolution of the structural parameters as a function of temperature revealed that surface melting began at first, and then the complete melting of stacks occurred until the final melting temperature was reached.  相似文献   

17.
Infrared dichroism is employed to study the orientation of chain molecules in linear and ethyl-branched polyethylene in the crystalline and noncrystalline regions during drawing and subsequent annealing. A crystalline (1894 cm?1) and a noncrystalline (1368 cm?1) band, as well as the bands at 909 cm?1 and 1375 cm?1 resulting from vinyl endgroups and methyl endgroups and sidegroups, are studied. For these bands relative orientation functions are derived and compared as a function of draw ratio and annealing temperature. It is shown that the relative orientation functions as derived from the dichroism of the noncrystalline, vinyl and methyl bands follow the same curve while the orientation function for the crystalline bands does not. These results support a two-phase model for partially crystalline polyethylene and additionally favor segregation of the endgroups and sidegroups in the noncrystalline component during crystallization. It is further shown that shrinkage occurs at the temperature at which the noncrystalline chain molecules start to disorient. From the dichroism of the methyl groups in ethyl-branched polyethylene, a value for the mean orientation of the noncrystalline chain molecules is calculated. We obtain for the orientation function of the noncrystalline regions at highest draw ratios (λ = 15–20), f = 0.35–0.57, while the chain molecules in the crystallites are nearly perfectly oriented (f ≈ 1.0). On the assumption that the noncrystalline component consists of folds, tie molecules, and chain ends, the different contributions of these components to the overall orientation are estimated. From these the relative number of CH2 groups incorporated into folds, tie molecules, and cilia can be derived. Further, on the basis of a simple structural model, the relative number of chains on the crystal surface contributing to the different noncrystalline components and their average length are estimated.  相似文献   

18.
One of the cyclic oligomers of formaldehyde, 1,3,5,7,9,11-hexoxecane, was found to undergo polymerization in the solid state to form polyoxymethylene both during and subsequent to x- or γ-irradiation. The polymer yield increases with polymerization temperature but decreases drastically near the melting point of the hexoxecane crystal. In order to clarify the specificity of the solid-state polymerization, the crystal structure of hexoxecane was first analyzed; hexoxecane forms a trigonal crystal with cell dimensions of a = b = 7.917 Å, c = 11.345 Å, space group R3 –C3i2, three molecules of 3 symmetry per unit cell. The polyoxymethylene as polymerized from a single crystal of hexoxecane is highly crystalline and the crystallites are definitely oriented with respect to the original crystal. There are three kinds of oriented trigonal polyoxymethylene: i.e., with the polymer chains oriented along the 〈100〉, 〈001〉, and 〈210〉 axes of the hexoxecane crystal. The relative yields of these crystallites depend upon the polymerization temperature. In addition to the ordinary trigonal polyoxymethylene, oriented orthorhombic polyoxymethylene was also found in the case of polymerization during treatment with x-rays.  相似文献   

19.
The effect of molecular orientation on the linear swelling of nylon 6 caused by absorption of water was studied using two kinds of oriented films, melt drawn and cold drawn. The molecular orientation causes anisotropy in swelling at all humidities such that the swelling is larger in the orientation direction than in the directions perpendicular to it. The large contribution of crystalline orientation to this phenomenon was expected for the melt drawn film which has practically no amorphous orientation. An analysis with a two-phase morphological model reveals that the distance between the crystallites is a prominent factor controlling the degree of linear swelling, and that the anisotropy of swelling arises from the change in the distribution of crystallites due to orientation. By comparing the result for the melt drawn film with that for the cold drawn film, which has considerable amorphous orientation, it was proven that molecular orientation in the amorphous phase where swelling actually occurs does not depend so much on the degree of swelling as on the distribution of crystallites.  相似文献   

20.
Nylon 6-clay hybrid (NCH) is a molecular composite of Nylon 6 and uniformly dispersed silicate monolayers of montmorillonite. In this study the preferred orientation of montmorillonite and Nylon-6 crystallites in a thick (3 mm) injection-molded bar of NCH has been investigated using x-ray diffraction and electron micrography (TEM). It is clear that this bar has a triple layer structure consisting of surface, intermediate, and middle layers which have different preferred orientation. In the surface layer both the silicate monolayers and the chain axes of Nylon-6 crystallites are parallel to the bar surface though the latter are randomly oriented within the plane. In the intermediate layer the silicate monolayers remain parallel to the bar surface but the Nylon-6 crystallites rotate by 90° so that the chain axes would be perpendicular to the bar surface or the silicate monolayers. In the middle layer the silicate monolayers are randomly oriented around the flow axis of the NCH bar while remaining parallel to it, and the Nylon crystallites are randomly oriented around the flow axis while keeping their chain axes perpendicular to the silicate monolayers. It may be concluded that such preferred orientation of Nylon 6 crystallites is induced by the clay because the crystallites in the pure Nylon 6 bar have no preferred orientation. ©1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号