首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxyfluoride garnets of formula Y3Fe5?xMxO12?xFx and Gd3Fe5?xMxO12?xFx (M = 3d transition element) result from partial substitution of O2? by F? in Y3Fe5O12 and Gd3Fe5O12 oxides. The cationic charge compensation is obtained by replacing the Fe3+ ions by divalent ions as Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ ions. The site occupied by some of these ions (Mn2+, Ni2+, Zn2+) is determined by magnetic or Mössbauer measurements.  相似文献   

2.
Ni0.5−xCuxZn0.5Fe2O4 (0.0≤x≤0.5) ferrite nanofibers with diameters of 80-160 nm have been prepared by electrospinning and subsequent heat treatment. Both the average grain size and lattice parameter are found to increase with the addition of copper. Fourier transform infrared spectra indicate that the portion of Fe3+ ions at the tetrahedral sites move to the octahedral sites as some of the substituted Cu2+ ions get into the tetrahedral sites. Vibrating sample magnetometer measurements show that the coercivity of these ferrite nanofibers decreases with increasing Cu concentration, whereas the specific saturation magnetization initially increases, reaches a maximum value at x=0.2 and then decreases with the Cu content further increase. Notable differences in magnetic properties at room temperature (298 K) and 77 K for the Ni0.3Cu0.2Zn0.5Fe2O4 nanofibers and corresponding powders are observed and mainly arise from the grain size and morphological variations between these two materials.  相似文献   

3.
The thermodynamic properties of the Fe3O4ZnFe2O4 spinel solid solution were determined at 900°C by the use of the solid electrolyte galvanic cell Fe2O3 + Fe3O4|O2?|Fe2O3 + ZnxFe3?xO4The activity values obtained exhibit slight negative deviation from the ideal solution model. An analysis of the free energy of mixing of the spinel solid solution provided information on the distribution of cations between the tetrahedral and octahedral sites of the spinel lattice. This is the basis for the estimation of the free energy of formation of pure zinc ferrite from oxides. ΔG0ZnFe2O4 = ?2740 ? 1.6 T cal mole?1  相似文献   

4.
The regularities in the change of character of the ferrite formation process as a function of Ni1?xZnxFe2O4 solid solution and of the degree of zinc oxide saturation of the Ni1?xZnxO solid solution (x = 0.14; 0.29; 0.43) are established in the temperature range 1220–1305°C. It is shown that in the reaction zone of interacting NiO, (Ni, ZnO), or ZnO with Fe2O3 the ferrite phase crystallizes only on iron oxide. The distribution of the Fe, Ni, and Zn concentrations over the reaction layer thickness using electron probe and X-ray spectrum analysis is obtained. The interdiffusion coefficients over the investigated temperature range calculated in the (Ni, Zn, Fe)O and ferrite phases change from (0.8 – 7.0) × 10?9 to (1.0 – 12.0) × 10?10 cm2/sec, respectively. The interaction of (Ni, Zn)O with Fe2O3 takes place by the mechanism of interaction of interdiffusion of Fe3+, Fe2+ and Ni2+, Zn2+ along with a current of Zn2+ ions and electrons or oxygen ions directed to the ferriteFe2O3 interface.  相似文献   

5.
Two original compounds, Ln4?2xBa2+2xZn2?xO10?2x, were isolated for Ln = La, Nd and 0 ≤ x ≤ 0.25. These oxides are tetragonal with a and c parameters close to 6.91 and 11.59 Å, respectively, for lanthanum, and 6.75 and 11.54 Å for neodymium. The structure of these phases was determined from X-ray powder patterns in the most symmetric space group, I4mcm, using Patterson and Fourier functions for x = 0. The structure should be compared to that of copper oxides La4?2xBa2+2xCu2?xO10?2x: it is built up of identical Ln2O5 layers formed from face- and edge-sharing LnO8 polyhedra, between which Ba2+ and Zn2+ ions are inserted. Contrary to the copper compounds, two successive Ln2O5 layers are rotated by 90°, involving a doubling of c. The result for Zn2+ is tetrahedral coordination, while the coordination of Ba2+ becomes a bicapped antiprism.  相似文献   

6.
Perovskite-structure oxides La1?x Sr x FeO3?y (x = 0, 0.2, 0.6, 1) were synthesized by the mechanochemical method. In order to refine the stoichiometric composition and the charge state of ions, these samples were studied by X-ray photoelectron spectroscopy (XPS). An investigation of perovskites with x = 0, 0.2, and 0.6 in air at room temperature showed that these samples do not contain oxygen vacancies (y = 0), i.e., they are fully oxidized. Hence, to produce electrical neutrality, these samples should contain iron(4+) cations in an amount proportional to the degree of substitution (x) of strontium(2+) for lanthanum(3+). However, no Fe4+ cations were found in the oxides. All perovskites contain only Fe3+ cations, oxygen ions O2? along with oxygen ions with reduced electron density (O?). These data provid evidence of the possible electron density redistribution from oxygen ions to iron cations. The fact that the oxides contain oxygen ions with reduced electron density suggests that weakly bound lattice oxygen in substituted perovskites is represented by O? ions.  相似文献   

7.
The catalytic properties of a series of copper chromite ferrite samples with the composition CuCr2–xFexO4 (where x = 0–2) and a spinel-type structure in reactions with reducing (water gas shift reaction, WGSR) and oxidizing (the oxidation of hydrogen) reaction atmospheres were studied. The samples were obtained by the thermal decomposition of mixed hydroxo compounds. The distribution of Cu2+ ions in the tetrahedral and octahedral crystallographic positions of spinel, which depends on the Cr3+/Fe3+ ratio, affects the apparent activation energy (Ea) in both of the reactions. In WGSR, Ea is ~33 kJ/mol for CuCr2O4, in which Cu2+ ions mainly occupy tetrahedral positions, whereas Ea ≈ 100 kJ/mol for CuFe2O4, in which Cu2+ ions mainly occupy octahedral positions. In the reaction of hydrogen oxidation, Ea is ~71 kJ/mol for CuCr2O4 or ~42 kJ/mol for CuFe2O4. The value of Ea for the mixed chromite ferrites changes with the replacement of chromium ions by iron ions and, hence, with a ratio between the amounts of copper ions in the tetrahedral and octahedral oxygen positions of spinel.  相似文献   

8.
A series of samples in the system Ni0.65Zn0.35CuxFe2?xO4 (x=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) were prepared by the usual ceramic technique. X-ray analysis showed that they were cubic spinel (single phase). Young's modulus, the dielectric loss and the change in capacitance under mechanical stress were measured for the samples. Young's modulus decreased with increasing Cu content. This is due to the fact that Cu2+ ions entered the lattice substitutionally for Fe3+ ions at the octahedral sites, creating lattice vacancies gave rise to lattice strain. The minimum value of the dielectric loss corresponding tox=0.3 may be due to the formation of lattice vacancies retarding the jump frequency to be far from the frequency of the applied a.c. field. The increase in capacitance of the samples with mechanical stress may be explained via the mechanism of dielectric polarization.  相似文献   

9.
Cation distribution in quenched and furnace-cooled samples of composition NixM1?xFe2O4 (where M is either Mg2+ or Cu2+) has been studied through magnetization measurements. It has been found that cation distribution in these mixed ferrites cannot be predicted by site preference energies. In magnesium-nickel ferrites, cation distribution is controlled by heat treatment up to x = 0.5, beyond which the effect of heat treatment diminishes. Addition of Ni2+ ions in copper ferrite reduces the diffusibility of Cu2+ ions and the distribution tends toward inverse spinel in the high-nickel region.  相似文献   

10.
This work is devoted to a detailed analysis of the interconnection between composition, cation distribution and acidic properties of the surface of nanocrystalline ferrites NixZn1−xFe2O4 obtained by aerosol pyrolysis. The detailed analysis of the Mössbauer spectra allows us to determine the distribution of cations between tetrahedral and octahedral positions in spinel structure. Depending on samples composition, the tetrahedral positions can be occupied by only Fe3+ cations (inverse spinel, x≥0.4) or by Fe3+ and Zn2+ cations (mixed spinel, x=0, 0.2). Increasing the nickel concentration in the ferrite leads to decrease in the number of strong acid centers on the surface. It was found that the decrease in the contribution of strong surface acid sites leads to an increase in sensory sensitivity of the ferrite towards ammonia. For ethanol detection an inverse relationship between sensor signal and surface acidity was observed.  相似文献   

11.
《化学:亚洲杂志》2017,12(20):2734-2743
We explored garnet‐structured oxide materials containing 3d transition‐metal ions (e.g., Co2+, Ni2+, Cu2+, and Fe3+) for the development of new inorganic colored materials. For this purpose, we synthesized new garnets, Ca3Sb2Ga2ZnO12 ( I ) and Ca3Sb2Fe2ZnO12 ( II ), that were isostructural with Ca3Te2Zn3O12. Substitution of Co2+, Ni2+, and Cu2+ at the tetrahedral Zn2+ sites in I and II gave rise to brilliantly colored materials (different shades of blue, green, turquoise, and red). The materials were characterized by optical absorption spectroscopy and CIE chromaticity diagrams. The Fe3+‐containing oxides showed band‐gap narrowing (owing to strong sp–d exchange interactions between Zn2+ and the transition‐metal ion), and this tuned the color of these materials uniquely. We also characterized the color and optical absorption properties of Ca3Te2Zn3−x Cox O12 (0<x ≤2.0) and Cd3Te2Zn3−x Cox O12 (0<x ≤1.0), which display brilliant blue and green‐blue colors, respectively. The present work brings out the role of the distorted tetrahedral coordination geometry of transition‐metal ions and ligand–metal charge transfer (which is manifested as narrowing of the band gap) in producing brilliantly colored garnet‐based materials.  相似文献   

12.
The bis-{N-(2-hydroxynaphthyl-1-methylimine)} anchored 1,3-di-derivative of lower rim p-tert-butyl-calix[4]arene possessing a N2O2, N2O4 or N2O6 binding core was found to be selective for Zn(II) ions even at ?60 ppb by eliciting fluorescence-on behaviour while the other ions, viz., Ti4+, VO2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Mg2+, Cd2+ and Hg2+ caused no change in the fluorescence. The reaction between 1 and Zn2+ was found to be stoichiometric with the formation of a 1:1 complex; while H+ quenched the fluorescence of the complex, OH restored it. The studies of the 1:1 isolated complexes of Zn2+, Ni2+ and Cu2+ augmented the results.  相似文献   

13.
Zn1?xNixFe2O4 (0.0 ≤ x ≤ 1.0) nanoparticles are prepared by sol–gel method using urea as a neutralizing agent. The evaluation of XRD patterns and TEM images indicated fine particle nature. The average crystallite size increased from 10 to 24 nm, whereas lattice parameters and density decreased with increasing Ni content (x). Infrared spectra showed characteristic features of spinel structure along with a strong influence of compositional variation. Magnetic measurements reveal a maximum saturation magnetization for Zn0.5Ni0.5Fe2O4 (x = 0.5); however, reduced value of magnetization is attributed to the canted spin structure and weakening of Fe3+(A)–Fe3+(B) interactions at the surface of the nanoparticles. Impedance analysis for different electro-active regions are carried out at room temperature with Ni substitution. The existence of different relaxations associated with grain, grain boundaries and electrode effects are discussed with composition. It is suggested that x = 0.5 is an optimal composition in Zn1?xNixFe2O4 system with moderate magnetization, colossal resistivity and high value of dielectric constant at low frequency for their possible usage in field sensor applications.  相似文献   

14.
Complex vanadium and titanium oxides modified by copper ions are studied by the electrochemical and ESR methods. Oxides Cu x V2?y Ti y O5?δ·nH2O (0<y<1.33) have a layered structure and oxides Cu x Ti1?y V y O5+δ·nH2O (0<y<0.25), an anatase structure. The intercalation of cations Cu2+ into the hydrates leads to oxidation of V4+. According to ESR data, V4+ exists in the oxides in the form of VO2+ and an octahedral surround of oxygen (V4+?O6), respectively. The electroreduction of ions of d-elements and chemisorbed oxygen in the oxides is analyzed. The intercalation of cations Cu2+ alters the content of V4+ and the chemisorption ability of the oxides. Possible reasons for this phenomenon are discussed.  相似文献   

15.
During oxidation of the aluminum- or chromium-substituted magnetites, (Fe2+Fe3+2?xM3fx)O2?4, with 0.4 < x < 1.8 in defect phase γ of the same spinel structure, the availability for oxidation of Fe2+ ions in the tetrahedral sites (A sites) of the spinel structure is much less than that in octahedral sites (B sites) and in both cases depends on the extent of aluminum or chromium substitution. The influence of cation distribution in A and B sites on the oxidation temperature is shown directly by differential thermogravimetric analysis and by electrical conductivity.  相似文献   

16.
We present two ZnII‐ and CdII‐based coordination polymers (CPs), L ‐Zn and L ‐Cd , offering H‐bonding‐based cavities of varying dimensions. Both CPs were used for the highly selective detection of S2O72? and Fe3+ ions where H‐bonding based cavities played an important role. Fluorescence quenching, competitive binding studies and binding parameters substantiated significant recognition of S2O72? and Fe3+ ions by both CPs.  相似文献   

17.
The electrophysical properties of the multicomponent Zn2ZrO4 ? Zn2SnO4 ? ZnFe2O4 system are studied. The electrophysical parameters of solid solutions of Zn2 ? x (Zr a Sn b )1 ? x Fe2x O4 (x = 0–1.0, Δx = 0.1, a + b = 1) are determined. It is found that the formed solid solutions are semiconductors with electrophysical properties that change in a regular fashion with composition and are distinguished by high values of resistivity (107–1012 Ω cm).  相似文献   

18.
A series of zinc oxides Ln2BaZnO5 has been synthesized for Ln = Sm, Eu, Gd, Dy, Ho, and Y. Theses phases are orthorhombic and isostructural with the copper compounds Ln2BaCuO5 previously described, as shown from the structural study of one member Y2BaZnO5. In this structure, whose framework is built up from edge- and face-sharing LnO7 polyhedra, the Zn2+ ions exhibit an unusual pyramidal coordination ZnO5. The solid solution Y2BaZn1?xCuxO5 has been studied by infrared spectroscopy and electron spin resonance (ESR). The distorted square-based pyramidal configuration of Zn2+ and Cu2+ is confirmed. The ESR spectra of diluted samples exhibit a hyperfine structure and are typical of individual Cu(II) ions. For higher Cu(II) contents, they exhibit an anisotropic broad signal which is interpreted in terms of CuCu interactions.  相似文献   

19.
基于尖晶石晶体结构信息,本文采用热力学三亚晶格模型,将材料热力学计算和第一性原理计算相结合,研究了ZnxMn1-x Fe2O4和NixMn1-xFe2O4立方相中的Zn2+、Ni2+、Mn2+以及Fe3+在8a和16d亚晶格上的占位有序化行为。结果表明:在锰铁氧体中,室温下Mn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;随着热处理温度升高,在1 273 K达到热处理平衡时的占位构型为(Fe0.093+Mn0.912+)[Fe1.913+Mn0.092+]O4,在热处理温度升至1 473 K时,达到热处理平衡时的占位构型为(Fe0.113+ Mn0.892+)[Fe1.893+Mn0.112+]O4,均与实验结果符合较好。在锌铁氧体中,室温下Zn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;在热处理温度较高时,Zn2+和Fe3+发生部分置换,符合实验结果。在镍铁氧体中,半数的Fe3+在室温下占据在8a亚晶格上,Ni2+与剩下另一半的Fe3+共同占据在16d亚晶格上,仅在热处理温度较高的时候发生微弱变化,亦与已有的实验结果吻合。在此基础上,本文进一步通过热力学预测建立了立方相尖晶石结构的ZnxMn1-xFe2O4、NixMn1-xFe2O4复合体系中阳离子占位行为与热处理温度对占位的影响。  相似文献   

20.
Synthesis and crystal structures are described for the compounds Ln2(Ti2−xLnx)O7−x/2, where Ln=Tb, Dy, Ho, Er, Tm, Yb, Lu, and x ranges from 0 to 0.67. Rietveld refinements of X-ray powder diffraction data indicate that in the Tb and Dy titanate pyrochlores, the extra Ln3+ cations mix mainly on the Ti4+ site with little disorder on the original Ln3+ site. For the smaller rare earths (Ho-Lu), stuffing additional lanthanide ions results in a pyrochlore to defect fluorite transition, where the Ln3+ and Ti4+ ions become completely randomized at the maximum (x=0.67). Initial magnetic characterization for the fully stuffed x=0.67 samples for Ln=Tb-Yb shows no long range ordering down to 2 K, and only partial saturation of the full expected magnetic moment under applied fields up to 5 T. In all of these Ln-Ti-O pyrochlores, the addition of magnetic Ln3+ in place of non-magnetic Ti4+ adds edge sharing tetrahedral spin interactions to a normally corner sharing tetrahedral network of spins. The increase in spin connectivity in this family of solid solutions represents a new avenue for investigating geometrical magnetic frustration in the rare earth titanate pyrochlores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号