首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
通过相对论性磁流体力学的计算知道,由双中子星合并产生的引力波对中子星内部是否存在夸克物质以及QCD物质状态方程的硬度度非常敏感。这些天文学上创造的热力学极限在20%以内跟某些快度、碰撞参数等条件下的相对论重离子碰撞产生的温度和密度相当。本文结合相对论模拟双中子星系统及实验室中重离子碰撞的结果,从而确定高密物质的状态方程和相结构。讨论了中子星合并后残留物的引力波发射,这将有助于了解夸克强子过渡的性质。  相似文献   

2.
A hybrid star with a pure quark core,a hadron crust and a mixed phase between the two is considered.The relativistic mean field model for hadron matter and the effective mass bag model for quark matter are used to construct the equation of state for hybrid stars.The influences of medium effects that are parameterized by the strong coupling constant have been discussed on the configuration of rotating stars.The strong coupling constant is a prominent factor that influences the properties of rotating hybrid stars.  相似文献   

3.
对称能表征了同位旋非对称强相互作用物质状态方程的同位旋相关部分,它对于理解核物理和天体物理中的许多问题有重要意义。简要总结了关于核物质和夸克物质对称能研究的最新进展。对于核物质对称能,通过对核结构,核反应以及中子星的研究,目前对其亚饱和密度的行为已有比较清楚的认识,同时,对饱和密度附近对称能的约束也取得了很好的研究进展。但如何确定核物质对称能的高密行为仍然是一个挑战。另一方面,在极端高重子数密度条件下,强相互作用物质将以退禁闭的夸克物质状态存在。同位旋非对称夸克物质可能存在于致密星内部,也可能产生于极端相对论重离子碰撞中。对最近关于夸克物质对称能对夸克星性质的影响以及重夸克星的存在对夸克物质对称能的约束的研究工作进行了介绍,结果表明同位旋非对称夸克物质中上夸克和下夸克可能感受到很不一样的相互作用,这对于研究极端相对论重离子碰撞中部分子动力学的同位旋效应有重要启发。The symmetry energy characterizes the isospin dependent part of the equation of state of isospin asymmetric strong interaction matter and it plays a critical role in many issues of nuclear physics and astrophysics. In this talk, we briefly review the current status on the determination of the symmetry energy in nucleon (nuclear) and quark matter. For nuclear matter, while the subsaturation density behaviors of the symmetry energy are relatively well-determined and significant progress has been made on the symmetry energy around saturation density, the determination of the suprasaturation density behaviors of the symmetry energy remains a big challenge. For quark matter, which is expected to appear in dense matter at high baryon densities, we briefly review the recent work about the effects of quark matter symmetry energy on the properties of quark stars and the constraint of possible existence of heavy quark stars on quark matter symmetry energy. The results indicate that the u and d quarks could feel very different interactions in isospin asymmetric quark matter, which may have important implications on the isospin effects of partonic dynamics in relativistic heavy-ion collisions.  相似文献   

4.
在致密星体内部极高密度条件下,强子物质可能发生退禁闭相变成为夸克物质,即强子-夸克相变。这种相变过程对于中子星的性质有着重要影响。考虑库仑能和表面能的影响,即有限尺度效应,相变过程中的混杂相包含了被称为pasta相的几何结构。强子-夸克共存相的平衡条件是通过求总能量的最小值得到的。采用相对论平均场(RMF)模型来描述强子物质相,采用Nambu-Jona-Lasinio(NJL)模型来描述夸克物质相。有限尺度效应一定程度上增加了中子星的最大质量,增加幅度取决于强子-夸克表面张力的大小。有限尺度效应能够降低混杂相的范围,其结果介于Gibbs结构和Maxwell结构的结果之间。研究结果表明,中子星中可能包含一个混杂相的核心部分,其大小受到表面张力等参数的影响。It is generally considered that hadron matter may undergo a deconfinement phase transition becoming quark matter at very high density in massive neutron stars. This hadron-quark phase transition has important impact on neutron stars, which has received much attention. We consider finite-size effect in this phase transition process, which contains the impact of Coulomb energy and surface energy. By including this effect, the mixed phase forms the pasta structures. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions. We employ the relativistic mean-field(RMF) model to describe the hadronic phase, while the Nambu-Jona-Lasinio(NJL) model is used for the quark phase. We conclude that the finite-size effect will raise the stiffness of EOS, and then increase the maximum mass of neutron stars, which depend on the value of surface tension. Our results show that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those from the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on the surface tension of the hadron-quark interface.  相似文献   

5.
Properties of hybrid stars in an extended MIT bag model   总被引:1,自引:0,他引:1  
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(p) decreases with baryon density p; this decrement makes the strange quark matter become more energetically favorable than ever, which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii.  相似文献   

6.
7.
超子耦合常数对混合星性质的影响   总被引:2,自引:0,他引:2  
用相对论平均场理论描述强子物质, 用NJL模型描述夸克物质研究了超子耦合常数对混合星性质的影响. 结果表明, 随着超子耦合常数的增大, 强子-夸克相变密度变小, 混合相区域的状态方程变硬, 中子星的最大质量及对应的半径变大. 超子耦合常数由0.73增到1.0时, 混合星最大质量由1.68M增至1.84M, 相应的半径由11.4km变到12.5km. 该夸克模型下不同强子参数组对应的混合星性质也有较明显的差异. 可知, 其适合于描述大质量而小夸克核心的混合星.  相似文献   

8.
《Nuclear Physics A》1998,637(3):451-465
We investigate the influence of medium effects on the structure of hybrid stars, i.e. neutron stars possessing a quark matter core. We found that medium effects in quark matter reduce the extent of a pure quark matter phase in the interior of a hybrid star significantly in favor of a mixed phase of quark and hadronic matter. Over a wide range of the strong coupling constant — which parameterizes the influence of medium effects — quark matter is able to exist at least in a mixed phase in the interior of neutron stars.  相似文献   

9.
《Annals of Physics》1987,179(2):272-293
Neutron star properties are computed in relativistic models that contain both hadron and quark degrees of freedom. Neutron matter is assumed to have a low-density phase described by quantum hadrodynamics (QHD) and a high-density phase described by quantum chromodynamics (QCD). Several different QHD models and approximations are employed; all use parameters that reproduce the binding energy and density of equilibrium nuclear matter. Calculated neutron star properties depend primarily on the high-density equation of state and cannot be inferred from the symmetry energy or compressibility of equilibrium nuclear matter. If interactions are neglected in the QCD phase, the density of the hadron-quark phase transition is determined by one free parameters, which is the energy/volume needed to create a “bubble” that confines the quarks and gluons. Observed neutron star masses do not constrain this parameter, but stable neutron stars with quark cores can exist only for a limited range of parameter values. When second-order gluon-exchange corrections are included in the QCD phase, these conclusions are unchanged, and the parameter values that lead to stable hadronquark stars are restricted even further.  相似文献   

10.
杨芳  申虹 《中国物理 C》2008,32(7):536-542
We study the hadron-quark phase transition in the interior of neutron stars, and examine the influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic mean field theory with several parameter sets is used to construct the nuclear equation of state, while the  相似文献   

11.
We study the properties of two-flavor quark matter in the Dyson-Schwinger model and investigate the possible consequences for hybrid neutron stars,with particular regard to the two-solar-mass limit.We find that with some extreme values of the model parameters,the mass fraction of two-flavor quark matter in heavy neutron stars can be as high as 30 percent and the possible energy release during the conversion from nucleonic neutron stars to hybrid stars can reach 10~(52) erg.  相似文献   

12.
We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient (10(26) g/cm4) and large electric fields at the surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.  相似文献   

13.
研究了含有暗物质的夸克核心混合星的观测属性。用相对论平均场理论和有效质量口袋模型分别描述夸克核心的混合星物质内强子相和夸克相,用Gibbs相平衡条件描述强子-夸克混合相,研究了由于包含强、弱相互作用的费米子暗物质对混合星质量、半径、引力红移、自转频率和转动惯量等整体观测属性的影响。结果表明,在强、弱相互作用下,暗物质粒子质量大于等于0.5 GeV时暗物质会使混合星的状态方程比无暗物质时有一定软化,相应的混合星最大质量减少。当调节暗物质粒子质量研究表明,随着暗物质粒子质量的增大,夸克核心的混合星物质的状态方程变软,混合星的质量、半径变小,并且引力红移、自转频率和转动惯量等整体观测属性也明显依赖于暗物质粒子的质量。当暗物质粒子质量0.1 GeV时,包含强、弱作用暗物质的混合星质量达到2.0 M和2.8 M(其中M为太阳质量),说明大质量脉冲星PSR J1859-0131和J1931-01可能是包含小质量暗粒子暗物质的强子夸克的混合星。整体观测属性的计算结果均在中子星的天文观察数据范围内,也说明强子夸克的混合星内可能包含暗物质。The observational properties of quark core hybrid star contain dark matter are studied. The influences of containing of strongly or weakly interacting dark matter to global observational features of hybrid stars, mass, radius, gravitational red-shift, rotational period and moment of inertia are studied by using relativistic mean field theory to describe hadron phase, effective mass bag model to quark phase, and Gibbs phase equilibrium conditions to hadron-quark mixed phase respectively. Our results indicate that, both in the strong and weak interacting case, the equation of state for hybrid star matter contain dark matter become softer than that of without dark matter while the mass of dark matter particles larger than 0.5 GeV, which leads to the decrease of the mass and corresponding radius of hybrid star. With the increase of the dark matter particle mass, the equation of state for hybrid star matter become softer, this cause the decrease of the mass and radius of hybrid star obviously. The gravitational red-shift and the rotational period, obviously increase of the moment of inertia of the hybrid stars are influenced by the dark matter particle mass. When the dark matter particle mass is equal to 0.1 GeV, the masses of the star with strong and weak interacting dark matter reach to 2.0 M and 2.8 M(M is the solar mass), this result indicates that the giant mass PSR, J1859-0131 and J1931-01, can be a hadron-quark hybrid star and containing dark matter with small dark particle mass. The computational results of all above global observational features of hybrid stars are in the range of astronomical observation data, these also indicate that hybrid star with quark core may contains dark matter.  相似文献   

14.
Under extreme conditions of temperature and/or density, quarks and gluons are expected to undergo a deconfinement phase transition. While this is an ephemeral phenomenon at the ultra-relativistic heavy-ion collider (BNL-RHIC), quark matter may exist naturally in the dense interior of neutron stars. Here, we present an appraisal of the possible phase structure of dense quark matter inside neutron stars, and the likelihood of its existence given the current status of neutron star observations. We conclude that quark matter inside neutron stars cannot be dismissed as a possibility, although recent observational evidence rules out most soft equations of state. PACS 97.60.Jd; 26.60.+c  相似文献   

15.
Influences of the bag constant on properties of hybrid stars   总被引:1,自引:0,他引:1       下载免费PDF全文
Influences of the bag constant on the properties of hybrid stars are investigated by using relativistic mean field theory and the MIT bag model to describe the hadron phase and quark phase in the interior of neutron stars, respectively. Our results indicate that the onset of hadron-quark phase transition is put off and the appearance of hyperon species is increased with the increase in bag constant. As a result, the hybrid star equation of state for a mixed phase range stiffens whereas that of the quark phase range softens, and the gravitational mass as well as the corresponding radius of hybrid stars are increased obviously. The gravitational mass of a hybrid star is increased from 1.42 Mo (M<,⊙> is solar mass) to 1.63M<,⊙> and the corresponding radius is changed from 9.1 km to 12.2 km when the bag constant (B<'1/4>) is increased from 170 MeV to 200 MeV. It is interesting to find that hybrid star equations of state become non-smooth when the TM2 parameter sets in the framework of relativistic mean field theory used to describe the hadronic matter, and consequently, the third family of compact stars appear in the mass-radius relations of hybrid stars in the narrow scope of the bag constant from 175 MeV to 180 MeV. These show that the choice of the bag constant in the MIT bag model has significant influence on the properties of hybrid stars.  相似文献   

16.
Within the framework of an effective -theory, an attempt is made to study diquark stars and their stability with extended scalar diquarks (ESD). In this context, an equation of state (EOS) for the ESD gas is obtained. We find the EOS for the ESD gas to be stiffer than that for a point-like diquark and/or quark gas. This EOS is then used to investigate various properties of the diquark stars. In particular, the mass and radius of the maximum mass star with ESD matter turn out to be larger than those obtained with point-like diquark and/or quark matter. However, they are in conformity with the predictions available for soliton and boson stars. The stability of ESD stars against radial oscillations is also investigated. Received: 18 May 1999 / Revised version: 19 November 1999 / Published online: 14 April 2000  相似文献   

17.
We investigate the properties of hybrid stars consisting of quark matter in the core and hadron matter in outer region. The hadronic equation of state (EOS) is calculated by using nonlinear Walecka model. Strange baryons are included in the hadronic EOS calculation. The chiral colour dielectric (CCD) model, in which quarks are confined dynamically, is used to calculate quark matter EOS. We find that the phase transition from hadron to quark matter is possible in a narrow range of the parameters of nonlinear Walecka and CCD models. The transition is strong or weak first order depending on the parameters used. The EOS thus obtained, is used to study the properties of hybrid stars. We find that the calculated hybrid star properties are similar to those of pure neutron stars.  相似文献   

18.
The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (“ISB”). For a reasonable strength for the effective four-Fermi current–current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the “ISB” phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust.  相似文献   

19.
We present results for the spin-1 color-spin-locking (CSL) phase using a NJL-type model in two-flavor quark matter for compact stars applications. The CSL condensate is flavor symmetric and therefore charge and color neutrality can easily be satisfied. We find small energy gaps ≃ 1MeV, which make the CSL matter composition and the EoS not very different from the normal quark matter phase. We keep finite quark masses in our calculations and obtain no gapless modes that could have strong consequences in the late cooling of neutron stars. Finally, we show that the region of the phase diagram relevant for neutron star cores, when asymmetric flavor pairing is suppressed, could be covered by the CSL phase.  相似文献   

20.
Densities in compact stars may be such that quarks are no longer confined in hadrons, but instead behave as weakly interacting particles. In this regime perturbative calculations are possible. Yet, due to high pressures and an attractive channel in the strong force, condensation of quarks in a superfluid state is likely. This can have interesting consequences for magnetic fields, especially in relation to the discovery of slow-period free precession in a compact star. In this proceedings there will be a discussion of the mass-radius relations of compact stars made from quark matter and magnetic field behaviour in compact stars with a quark matter core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号