首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Crude enzyme preparations fromAureobasidium sp. strain NRRL Y-2311-1 were characterized and tested for the capacity to saccharify corn fiber. Cultures grown on xylan, corn fiber, and alkaline hydrogen peroxide (AHP)-pretreated corn fiber produced specific levels of endoxylanase, amylase, protease, cellulase, and other activities. Using equal units of endoxylanase activity, crude enzymes from AHP-pretreated corn fiber cultures were most effective in saccharification. Multiple enzyme activities were implicated in this process. Pretreatment of corn fiber with AHP nearly doubled the susceptibility of hemicellulose to enzymatic digestion. Up to 138 mg xylose, 125 mg arabinose, and 490 mg glucose were obtained per g pretreated corn fiber under conditions tested. The use of brand or trade names may be necessary to report factually on available data. The USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable. All programs and services of the USDA are offered on a non-discriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

2.
A process was developed to fractionate corn fiber into glucose- and pentose-rich fractions. Corn fiber was ammonia fiber explosion treated at 90 degrees C, using 1 g anhydrous ammonia pergram of drybiomass, 60% moisture, and 30-min residence time. Twenty four hour hydrolysis of ammonia fiber explosion-treated corn fiber with cellulase converted 83% of available glucanto-glucose. In this hydrolysis the hemicellulose was partially broken down with 81% of the xylan and 68% of the arabinan being contained in the hydrolysate after filtration to remove lignin and other insoluble material. Addition of ethanol was used to precipitate and recover the solubilized hemicellulose from the hydrolysate, followed by hydrolysis with 2% (v/v) sulfuric acid to convert the recovered xylan and arabinan to monomeric sugars. Using this method, 57% of xylose and 54% of arabinose available in corn fiber were recovered in a pentose-rich stream. The carbohydrate composition of the pentose-enriched stream was 5% glucose, 57% xylose, 27% arabinose, and 11% galactose. The carbohydrate composition of the glucose-enriched stream was 87% glucose, 5% xylose, 6% arabinose, and 1% galactose, and contained 83% of glucose available from the corn fiber.  相似文献   

3.
A process was developed to fractionate and isolate the hemicellulose B component of corn fiber generated by corn wet milling. The process consisted of pretreatment by soaking in aqueous ammonia followed by enzymatic cellulose hydrolysis, during which the hemicellulose B was solubilized by cleavage into xylo-oligosaccharides and subsequently recovered by precipitation with ethanol. The pretreatment step resulted in high retention of major sugars and improvement of subsequent enzymatic hydrolysis. The recovered hemicellulose B was hydrolyzed by a cocktail of enzymes that consisted of β-glucosidase, pectinase, xylanase, and ferulic acid esterase (FAE). Xylanase alone was ineffective, demonstrating yields of less than 2% of xylose and arabinose. The greatest xylose and arabinose yields, 44% and 53%, respectively, were obtained by the combination of pectinase and FAE. A mass balance accounted for 87% of the initially present glucan, 91% of the xylan, and 90% of the arabinan. The developed process offered a means for production of corn fiber gum as a value-added co-product and C5 sugars, which could be converted to other valuable co-products through fermentation in a corn wet-milling biorefinery.  相似文献   

4.
Corn fiber, which consists of about 20% starch, 14% cellulose, and 35% hemicellulose, has the potential to serve as a low cost feedstock for production of fuel ethanol. Currently, the use of corn fiber to produce fuel ethanol faces significant technical and economic challenges. Its success depends largely on the development of environmentally friendly pretreatment procedures, highly effective enzyme systems for conversion of pretreated corn fiber to fermentable sugars, and efficient microorganisms to convert multiple sugars to ethanol. Several promising pretreatment and enzymatic processes for conversion of corn fiber cellulose, hemicellulose, and remaining starch to fermentable sugars were evaluated. These hydrolyzates were then examined for ethanol production in bioreactors, using genetically modified bacteria and yeast. Several novel enzymes were also developed for use in pretreated corn fiber saccharification. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

5.
Xylan is the major component of hemicellulose, which consists of up to one-third of the lignocellulosic biomass. When the zinc chloride solution was used as a pretreatment agent to facilitate cellulose hydrolysis, hemicellulose was hydrolyzed during the pretreatment stage. In this study, xylan was used as a model to study the hydrolysis of hemicellulose in zinc chloride solution. The degradation of xylose that is released from xylan was reduced by the formation of zinc-xylose complex. The xylose yield was >90% (w/w) at 70°C. The yield and rate of hydrolysis were a function of temperature and the concentration of zinc chloride. The ratio of zinc chloride can be decreased from 9 to 1.3 (w/w). At this ratio, 76% of xylose yield was obtained. When wheat straw was pretreated with a concentrated zinc chloride solution, the hemicellulose hydrolysate contained only xylose and trace amounts of arabinose and oligosaccharides. With this approach, the hemicellulose hydrolysate can be separated from cellulose residue, which would be hydrolyzed subsequently to glucose by acid or enzymes to produce glucose. This production scheme provided a method to produce glucose and xylose in different streams, which can be fermented in separated fermenters.  相似文献   

6.
Corn fiber is the fibrous by-product of wet-mill corn processing. It typically consists of about 20% starch, 14% cellulose, and 30% hemicellulose in the form of arabinoxylan. Crude corn fiber (CCF) was fractionated into de-starched corn fiber (DSCF), corn fiber with cellulose (CFC) enriched, and corn fiber arabinoxylan (CFAX), and these fractions were evaluated as substrates for enzyme production by Trichoderma reesei. T. reesei QM9414 and Rut C-30 grew on CCF, DSCF, CFC, or CFAX and secreted a number of hydrolytic enzymes. The enzymes displayed synergism with commercial cellulases for corn fiber hydrolysis. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

7.
Bagasse, corn husk, and switchgrass were pretreated with ammonia water to enhance enzymatic hydrolysis. The sample (2 g) was mixed with 1–6 mL ammonia water (25–28% ammonia) and autoclaved at 120°C for 20 min. After treatment, the product was vacuum-dried to remove ammonia gas. The dried solid could be used immediately in the enzymatic hydrolysis without washing. The enzymatic hydrolysis was effectively improved with more than 0.5 and 1 mL ammonia water/g for corn husk and bagasse, respectively. In bagasse, glucose, xylose, and xylobiose were the main products. The adsorption of CMCase and xylanase was related to the initial rate of enzymatic hydrolysis. In corn husks, arabinoxylan extracted by pretreatment was substantially unhydrolyzed because of the high ratio of arabinose to xylose (0.6). The carbohydrate yields from cellulose and hemicellulose were 72.9% and 82.4% in bagasse, and 86.2% and 91.9% in corn husk, respectively. The ammonia/water pretreatment also benefited from switchgrass (Miscanthus sinensis and Solidago altissima L.) hydrolysis.  相似文献   

8.
Pretreatment and enzymatic saccharification of corn fiber   总被引:14,自引:0,他引:14  
Corn fiber consists of about 20% starch, 14% cellulose, and 35% hemicellulose, and has the potential to serve as a low-cost feedstock for production of fuel ethanol. Several pretreatments (hot water, alkali, and dilute, acid) and enzymatic saccharification procedures were evaluated for the conversion of corn fiber starch, cellulose, and hemicellulose to monomeric sugars. Hot water pretreatment (121°C, 1 h) facilitated the enzymatic sacch arification of starch and cellulose but not hemicellulose. Hydrolysis of corn fiber pretreated with alkali un dersimilar conditions by enzymatic means gave similar results. Hemicellulose and starch components were converted to monomeric sugars by dilute H2SO4 pretreatment (0.5–1.0%, v/v) at 121°C. Based on these findings, a method for pretreatment and enzymatic saccharification of corn fiber is presented. It in volves the pretreatment of corn fiber (15% solid, w/v) with dilute acid (0.5% H2SO4, v/v) at 121°C for 1 h, neutralization to pH 5.0, then saccharification of the pretreated corn fiber material with commercial cellulase and β-glucosidase preparations The yield of monomeric sugars from corn fiber was typically 85–100% of the theoretical yield. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

9.
Corn stover silage is an attractive raw material for the production of biofuels and chemicals due to its high content of carbohydrates and easy degradability. The effects of Fe(NO3)3 pretreatment conditions on sugar yields were investigated for corn stover silage. In addition, a combined severity factor was used to evaluate the effect of pretreatment conditions on the concentration of total sugars and inhibitors. Optimum pretreatment condition was obtained at 150 °C for 10 min with 0.05 M Fe(NO3)3, at which the yields of soluble xylose and glucose in liquid achieved 91.80% of initial xylose, 96.74% of initial arabinose and 19.09% of initial glucose, respectively, meanwhile, 91.84% of initial xylose, 98.24% of initial arabinose, and 19.91% of initial glucose were removed. In addition, a severity analysis showed that the maximum sugar concentration of 33.48 g/l was achieved at combined severity parameter value of 0.62, while the inhibitor concentration was only 0.03 g/l. Fe(NO3)3 is an effective catalyst to enhance hemicellulose hydrolysis in corn stover silage, the yields of monomeric xylose in the liquid fraction reached as high as 91.06% of initial xylose and 96.22% of initial arabinose, respectively.  相似文献   

10.
To enhance the conversion of the cellulose and hemicellulose, the corncob pretreated by aqueous ammonia soaking was hydrolyzed by enzyme complexes. The saturation limit for cellulase (Spezyme CP) was determined as 15 mg protein/g glucan (50 filter paper unit (FPU)/g glucan). The accessory enzymes (β-glucosidase, xylanase, and pectinase) were supplemented to hydrolyze cellobiose (cellulase-inhibiting product), hemicellulose, and pectin (the component covering the fiber surfaces), respectively. It was found that β-glucosidase (Novozyme 188) loading of 1.45 mg protein/g glucan [30 cellobiase units (CBU)/g glucan] was enough to eliminate the cellobiose inhibitor, and 2.9 mg protein/g glucan (60 CBU/g glucan) was the saturation limit. The supplementation of xylanase and pectinase can increase the conversion of cellulose and hemicellulose significantly. The yields of glucose and xylose enhanced with the increasing enzyme loading, but the increasing trend became low at high loading. Compared with xylanase, pectinase was more effective to promote the hydrolysis of cellulose and hemicellulose. The supplementation of pectinase with 0.12 mg protein/g glucan could increase the yields of glucose and xylose by 7.5% and 29.3%, respectively.  相似文献   

11.
A psychrotrophic fungus identified as Trichoderma sp. SC9 produced 36.7 U/ml of xylanase when grown on a medium containing corncob xylan at 20 °C for 6 days. The xylanase was purified 37-fold with a recovery yield of 8.2%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of approximately 20.5 kDa. The enzyme had an optimal pH of 6.0, and was stable over pH 3.5–9.0. The optimal temperature of the xylanase was 42.5 °C and it was stable up to 35 °C at pH 6.0 for 30 min. The xylanase was thermolabile with a half-life of 23.9 min at 45 °C. The apparent K m values of the xylanase for birchwood, beechwood, and oat-spelt xylans were found to be 3, 2.1, and 16 mg/ml respectively. The xylanase hydrolyzed beechwood xylan and birchwood xylan to yield mainly xylobiose as end products. The enzyme-hydrolysed xylotriose, xylotetraose, and xylopentose to produce xylobiose, but it hardly hydrolysed xylobiose. A xylanase gene (xynA) with an open reading frame of 669 nucleotide base pairs (bp), encoding 222 amino acids, from the strain was cloned and sequenced. The deduced amino acid sequence of XynA showed 85% homology with Xyn2 from a mesophilic strain of Trichoderma viride.  相似文献   

12.
When grown on a purified cellulose such as CF11 cellulose,Aspergillus fumigatus produces mainly exoglucanase (Avicelase) and endoglucanase (CMCase) with small amounts of Β-glucosidase and xylanase. In such cultures, the pH drops to 3–3.5 after 2 d incubation, which may account for the low levels of Β-glucosidase. The amounts of extracellular enzymes produced are larger when the organism is grown on hay or straw than when grown on CF11 cellulose. In particular, CMCase levels increase approximately seven times and xylanase levels increase 40–50 times. In such cultures the pH remains fairly constant at 6–7 over the 10-d incubation period used and so Β-glucosidase levels are also increased. Extraction of the hay or straw substrate with ethanol had little effect on enzyme production and so there appears to be no soluble material present that influences enzyme production. The organism produced elevated levels of CMCase and xylanase on barley straw, oat straw, and wheat straw, there being little difference between the varieties of each tested. However, grasses dried at elevated temperatures (260–500‡C) gave enzyme levels similar to CF11 cellulose. Similarly, chemical delignification of hay or straw gave enzyme levels similar to CF11 cellulose. Thus, both these treatments must lead to degradation of the hemicellulose present in the substrate. A. fumigatus was able to grow on a number of laboratory prepared and commercially available xylans (hay, barley straw, oat straw, and larch) as a pelletted mycelium. In all cases xylanase levels were increased 10–30 times over CF11 cellulose as substrate, but CMCase levels were similar to those with CF11 cellulose as substrate. Β-Glucosidase in most cases was not detectable, probably because the pH fell to 3–3.5 during incubation. Thus it appears that cellulase and xylanase can be independently induced in this organism. The optimum incubation time at 37‡C for xylanase production was 4–7 d and the optimum concentration of hay as substrate was 4–5%, even though this produces a very thick slurry that does not shake well.  相似文献   

13.
Microbial xylanases have a promising biotechnological potential to be used in industries. In this study, regulation of xylanase production was examined in Bacillus cereus BSA1. Xylanase production was induced by xylan. The enzyme production further increased in the presence of xylose and arabinose in very low concentration with addition of xylan (0.5% up to 6.02 U/ml). Addition of glucose (about 0.1%) to the media supplemented with xylan repressed xylanase production. Even higher concentration (>0.1%) of xylose and arabinose repressed xylanase biosynthesis. Glucose-mediated repression was partially relived by addition of cyclic adenosine monophosphate. Chemical like 2-4-dinitrophenol, which can inhibit adenosine triphosphate synthesis in cell, repressed xylanase synthesis and it suggested xylanase synthesis to be an energy dependent process.  相似文献   

14.
Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of l-arabinose, 4-O-methyl-d-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50?°C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5–3.5% (w/v), enzyme load 40–80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.  相似文献   

15.
Corn fiber is a grain-processing residue containing significant amounts of cellulose, hemicellulose, and starch, which is collected in facilities where fuel ethanol is currently manufactured. Preliminary research has shown that corn fiber (30% moisture dry weight basis [dwb]) responds well to ammonia-fiber explosion (AFEX) pretreatment. However, an important AFEX pretreatment variable that has not been adequately explored for corn fiber is sample moisture. In the present investigation, we determined the best AFEX operating conditions for pretreatment of corn fiber at high moisture content (150% moisture dwb). The optimized AFEX treatment conditions are defined in terms of the moisture content, particle size, ammonia to biomass ratio, temperature, and residence time using the response of the pretreated biomass to enzymatic hydrolysis as an indicator. Approximate optimal-pretreatment conditions for unground corn fiber containing 150% (dwb) moisture were found to be: temperature, 90?C; ammonia: dry corn fiber mass ratio, 1:1; and residence time 30 min (average reactor pressure under these conditions was 200 pounds per square inch [psig]). Enzymatic hydrolysis of the treated corn fiber was performed with three different enzyme combinations. More than 80% of the theoretical sugar yield was obtained during enzymatic hydrolysis using the best enzyme combination after pretreatment of corn fiber under the optimized conditions previously described. A simple process for enzyme recovery and reuse to hydrolyze multiple portions of AFEX-treated corn fiber by one portion of enzyme preparation is demonstrated. Using this process, five batches of fresh substrate (at a concentration of 5% w/v) were successfully hydrolyzed by repeated recovery and reuse of one portion of enzyme preparation, with the addition of a small portion of fresh enzyme in each subsequent recycling step.  相似文献   

16.
Two new ethanologenic strains (FBR4 and FBR5) of Escherichia coli were constructed and used to ferment corn fiber hydrolysate. The strains carry the plasmid pLO1297, which contains the genes from Zymomonas mobilis necessary for efficiently converting pyruvate into ethanol. Both strains selectively maintained the plasmid when grown anaerobically. Each culture was serially transferred 10 times in anaerobic culture with sugar-limited medium containing xylose, but noselective antibiotic. An average of 93 and 95% of the FBR4 and FBR5 cells, respectively, maintained pLO1297 in anaerobic culture. The fermentation performances of the repeatedly transferred cultures were compared with those of cultures freshly revived from stock in pH-controlled batch fermentations with 10% (w/v) xylose. Fermentation results were similar for all the cultures. Fermentations were completed within 60 h and ethanol yields were 86–92% of theoretical. Maximal ethanol concentrations were 3.9–4.2% (w/v). The strains were also tested for their ability to ferment corn fiber hydrolysate, which contained 8.5% (w/v) total sugars (2.0% arabinose, 2.8% glucose, and 3.7% xylose). E. coli FBR5 produced more ethanol than FBR4 from the corn fiber hydrolysate. E. coli FBR5 fermented all but 0.4% (w/v) of the available sugar, whereas strain FBR4 left 1.6% unconsumed. The fermentation with FBR5 was completed within 55 h and yielded 0.46 g of ethanol/g of available sugar, 90% of the maximum obtainable. Author to whom all correspondence and reprint requests should be addressed. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA im plies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

17.
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by β-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 °C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0–5.5. They were stable in the pH range 5.0–10.0 and 5.5–8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 °C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 °C.  相似文献   

18.
Sugarcane bagasse, a byproduct of the cane sugar industry, is an abundant source of hemicellulose that could be hydrolyzed to yield a fermentation feedstock for the production of fuel ethanol and chemicals. The effects of sulfuric acid concentration, temperature, time, and dry matter concentration on hemicellulose hydrolysis were studied with a 20-L batch hydrolysis reactor using a statistical experimental design. Even at less severe conditions considerable amounts (>29%) of the hemicellulose fraction could be extracted. The percentage of soluble oligosaccharides becomes very low in experiments with high yields in monosaccharides, which indicates that the cellulose fraction is only slightly affected. For the sugar yields, acid concentration appears to be the most important parameter, while for the formation of sugar degradation products, temperature shows the highest impact. It could be demonstrated that the dry matter concentration in the reaction slurry has a negative effect on the xylose yield that can be compensated by higher concentrations of sulfuric acid owing to a positive interaction between acid concentration and dry matter contents.  相似文献   

19.
Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67-210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber. The sugars tested included glucose, xylose, and arabinose. All five strains were able to utilize the three sugars for astaxanthin production. Among them, ATCC 74219 was the best astaxanthin producer. Kinetics of sugar utilization of this strain was studied, both with the individual sugars and with their mixtures. Arabinose was found to give the highest astaxanthin yield. It also was observed that glucose at high concentrations suppressed utilization of the other two sugars. Corn fiber hydrolysate obtained by dilute sulfuric acid pretreatment and subsequent enzyme hydrolysis was tested for astaxanthin production by strain ATCC 74219. Dilution of the hydrolysate was necessary to allow growth and astaxanthin production. All the sugars in the hydrolysate diluted with two volumes of water were completely consumed. Astaxanthin yield of 0.82 mg/g total sugars consumed was observed.  相似文献   

20.
To increase the value of coproducts from corn ethanol fermentation and soybean aqueous processing, distiller??s dried grains with solubles (DDGS) and soybean cotyledon fiber were used as the substrates for solid state fermentation (SSF) to improve feed digestibility. Aspergillus oryzae, Trichoderma reesei, and Phanerochaete chrysosporium were chosen as they produce desirable enzymes and are widely used in SSF for feed. The results showed that the cellulase and xylanase activities were significantly increased after 7?days of fermentation, and cellulose and hemicellulose degradation was also greatly increased. When soybean fiber was used as SSF substrate, the maximum activities of the cellulase and xylanase were 10.3 and 84.2?IU/g substrate (dry weight basis) after SSF treatment, respectively. However, the enzyme activities were relatively low in DDGS, and the growth of the three fungi was poor. The fungi grew better when soybean cotyledon fiber was added to DDGS, and cellulase and xylanase activity increased with the increase of soybean fiber content. Porosity was identified as an important factor for SSF because the addition of inert soybean hull alone improved the fungi growth significantly. These data suggest that the nutritional value of DDGS and soybean cotyledon fiber as monogastric animal feed could be greatly enhanced by SSF treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号