首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-impact ionization sources like electrospray ionization (ESI) and matrix-assisted, laser desorption/ionization (MALDI) equipped with time-of-flight (TOF) mass analyzers provide intact protein analysis over a very wide molar mass range. ESI/TOFMS provides also indications on the higher-order structure of intact proteins and non-covalent protein complexes. However, direct analysis of intact proteins mixtures in real samples shows limited success, mainly because spectra become very complex to interpret. This is also due to sample contaminants, and to the mechanism of competitive ionization in ESI or MALDI. Rapid and efficient sample clean-up and separation methods can significantly enhance the power of TOFMS for intact protein analysis. However, if protein native conditions want to be maintained, the methods should affect neither the three-dimensional structure nor the non-covalent chemistry of the proteins. Reversed-phase (RP) HPLC, size-exclusion chromatography (SEC), and capillary zone electrophoresis (CZE) are on-line or off-line coupled to ESI/TOFMS or MALDI/TOFMS. In fact, these separation methods often show limitations when applied to the analysis of native proteins. Organic modifiers and saline buffers are required in the case of RP HPLC or CZE. They can induce protein degradation or affect ionization when MS is performed after separation. High voltages used in CZE can contribute to alter proteins from their native form. In the case of high molar mass proteins, SEC is scarcely selective, and barely able to detect protein aggregates. Sample entanglement/adsorption on the stationary phase can also occur.  相似文献   

2.
大气压离子化技术/飞行时间质谱联用进展   总被引:1,自引:0,他引:1  
综述了大气压离子化技术/飞行时间质谱联用技术及其应用的进展  相似文献   

3.
Galbeta1-4GlcNAc-6,6'-disulfate and 2'-epimer corresponding to Galbeta1- 4ManNAc-6,6'-disulfate were distinguished by mass spectrometry by utilizing fast atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) methods. As for the steric information, negative-ion ESI mass spectrometry/mass spectrometry (MS/MS) provides the most extensive data, but FAB MS/MS also reveals detailed structural information of interest in our case, where MALDI MS is not yet fully equipped with post-source decay.  相似文献   

4.
近年来质谱离子化技术方面有两项重要成果:基质辅助激光解吸离子化(matrix-assisted laser desorption ionization,MALDI)和电喷雾离子化(electrospray ionization,ESI)。MALDI和ESI的应用使质谱在生物大分子研究方面取得重大突破。本文仅就MALDI的原理、特点、样品准备方法、基质的选择、仪器条件及其在生物大分子应用方面的最新进展进行简要的综述。  相似文献   

5.
6.
High-resolution mass spectrometry (HRMS) continues to play an important role in the compositional characterization of larger organic molecules. In the field of polymer characterization, however, the application of HRMS has made only slow progress because of lower compatibility between matrix-assisted laser desorption/ionization (MALDI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS). In this study, a newly developed type of MALDI high-resolution time-of-flight mass spectrometry (TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS) was applied to the structural and compositional characterization of polymers. To create a graphical distribution of polymer components on a two-dimensional plot converted from complex mass spectra, we adopted a slightly modified Kendrick mass defect (KMD) analysis based on accurate masses determined using spiral-TOFMS. By setting the Kendrick mass scale based on the mass of the repeating units of a given polymer, components with common repeat units lined up in the horizontal direction on the KMD plot, whereas those components with different structures were shifted vertically. This combination of MALDI spiral-TOFMS measurement and KMD analysis enabled the successful discrimination of the polymer components in a blend of poly(alkylene oxide)s, the compositional analysis of poly(ethylene oxide)/poly(propylene oxide) block copolymers, and profiling of the end-group distribution of poly(ε-caprolactone)s synthesized under different conditions.
?  相似文献   

7.
We investigated the application of a high‐resolution Orbitrap mass spectrometer equipped with an electrospray ionization (ESI) source and a matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometer to the metabolite profiling of a model small interfering RNA (siRNA) duplex TSR#34 and compared their functions and capabilities. TSR#34 duplex was incubated in human serum in vitro, and the duplex and its metabolites were then purified by ion exchange chromatography in order to remove the biological matrices. The fraction containing the siRNA duplex and its metabolites was collected and desalted and then subjected to high‐performance liquid chromatography (HPLC) equipped with a reversed phase column. The siRNA and its metabolites were separated into single strands by elevated chromatographic temperature and analyzed using the ESI‐Orbitrap or the MALDI‐TOF mass spectrometer. Using this method, the 5' and/or 3' truncated metabolites of each strand were detected in the human serum samples. The ESI‐Orbitrap mass spectrometer enabled differentiation between two possible RNA‐based sequences, a monoisotopic molecular mass difference which was less than 2 Da, with an intrinsic mass resolving power. In‐source decay (ISD) analysis using a MALDI‐TOF mass spectrometer allowed the sequencing of the RNA metabolite with characteristic fragment ions, using 2,4‐dihydroxyacetophenone (2,4‐DHAP) as a matrix. The ESI‐Orbitrap mass spectrometer provided the highest mass accuracy and the benefit of on‐line coupling with HPLC for metabolite profiling. Meanwhile, the MALDI‐TOF mass spectrometer, in combination with 2,4‐DHAP, has the potential for the sequencing of RNA by ISD analysis. The combined use of these methods will be beneficial to characterize the metabolites of therapeutic siRNA compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Qualitative and quantitative analysis of post‐translational protein modifications by mass spectrometry is often hampered by changes in the ionization/detection efficiencies caused by amino acid modifications. This paper reports a comprehensive study of the influence of phosphorylation and methylation on the responsiveness of peptides to matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry. Using well‐characterized synthetic peptide mixtures consisting of modified peptides and their unmodified analogs, relative ionization/detection efficiencies of phosphorylated, monomethylated, and dimethylated peptides were determined. Our results clearly confirm that the ion yields are generally lower and the signal intensities are reduced with phosphopeptides than with their nonphosphorylated analogs and that this has to be taken into account in MALDI and ESI mass spectrometry. However, the average reduction of ion yield caused by phosphorylation is more pronounced with MALDI than with ESI. The unpredictable impact of phosphorylation does not depend on the hydrophobicity and net charge of the peptide, indicating that reliable quantification of phosphorylation by mass spectrometry requires the use of internal standards. In contrast to phosphorylation, mono‐ and dimethylated peptides frequently exhibit increased signal intensities in MALDI mass spectrometry (MALDI‐MS). Despite minor matrix‐dependent variability, MALDI methods are well suited for the sensitive detection of dimethylated arginine and lysine peptides. Mono‐ and dimethylation of the arginine guanidino group did not significantly influence the ionization efficiency of peptides in ESI‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Applications of mass spectrometry to food proteins and peptides   总被引:3,自引:0,他引:3  
The application of mass spectrometry (MS) to large biomolecules has been revolutionized in the past decade with the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) techniques. ESI and MALDI permit solvent evaporation and sublimation of large biomolecules into the gaseous phase, respectively. The coupling of ESI or MALDI to an appropriate mass spectrometer has allowed the determination of accurate molecular mass and the detection of chemical modification at high sensitivity (picomole to femtomole). The interface of mass spectrometry hardware with computers and new extended mass spectrometric methods has resulted in the use of MS for protein sequencing, post-translational modifications, protein conformations (native, denatured, folding intermediates), protein folding/unfolding, and protein-protein or protein-ligand interactions. In this review, applications of MS, particularly ESI-MS and MALDI time-of-flight MS, to food proteins and peptides are described.  相似文献   

10.
In the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis of various compounds synthesized in our laboratory, strong [M - H]+ ion peaks were often observed for the molecules with tertiary amino groups. In this work, the MALDI TOF MS behavior of two groups of compounds that incorporate tertiary amino moieties was investigated. One group is bisurea dimethylanilines (BUDMAs) prepared for the study of molecular recognition in thermoplastic elastomers, and the other group is the poly(propylene imine) diaminobutane dendrimers. The results clearly demonstrate the appearance of the [M - H]+ ions. In order to understand the possible mechanisms for the generation of these ions, a series of model compounds, ranging from primary to tertiary amines, were investigated. Unlike the tertiary amines, no [M - H]+ ion peaks were recorded for the primary amines, and only barely detectable ones, if any, for some secondary amines. It appears that the tertiary amino groups play an important role in the formation of these ions. In addition to MALDI TOF MS analysis, these samples were also applied to electrospray ionization (ESI) MS where no [M - H]+ ions were observed. The results indicate that the generation of [M - H]+ ion is due to the unique MALDI conditions and is likely to be formed via dehydrogenation of a protonated tertiary amine resulting in an N=C double bond. The absence of [M - H]+ ion peaks for the primary and secondary amines is probably because upon their formation these ions could easily transfer one proton to the corresponding amines in the MALDI gas-phase plume, yielding neutral imines that cannot be detected by MS.  相似文献   

11.
Comprehensive metabolome analysis using mass spectrometry (MS) often results in a complex mass spectrum and difficult data analysis resulting from the signals of numerous small molecules in the metabolome. In addition, MS alone has difficulty measuring isobars and chiral, conformational and structural isomers. When a matrix-assisted laser desorption ionization (MALDI) source is added, the difficulty and complexity are further increased. Signal interference between analyte signals and matrix ion signals produced by MALDI in the low mass region (<1500 Da) cause detection and/or identification of metabolites difficult by MS alone. However, ion mobility spectrometry (IMS) coupled with MS (IM-MS) provides a rapid analytical tool for measuring subtle structural differences in chemicals. IMS separates gas-phase ions based on their size-to-charge ratio. This study, for the first time, reports the application of MALDI to the measurement of small molecules in a biological matrix by ion mobility-time of flight mass spectrometry (IM-TOFMS) and demonstrates the advantage of ion-signal dispersion in the second dimension. Qualitative comparisons between metabolic profiling of the Escherichia coli metabolome by MALDI-TOFMS, MALDI-IM-TOFMS and electrospray ionization (ESI)-IM-TOFMS are reported. Results demonstrate that mobility separation prior to mass analysis increases peak-capacity through added dimensionality in measurement. Mobility separation also allows detection of metabolites in the matrix-ion dominated low-mass range (m/z < 1500 Da) by separating matrix signals from non-matrix signals in mobility space.  相似文献   

12.
A liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) method was developed using the latest high-resolution LC column technology, the ultra performance liquid chromatography (UPLC), and electrospray ionization (ESI) in the positive ion mode. Gradient UPLC separation conditions were optimized for a group of 22 analytes comprising 17 glucocorticosteroids, specific designer steroids such as tetrahydrogestrinone (THG) and specific beta2-agonists such as formoterol. The UPLC/TOFMS separation obtained required 5.5 min only for all the substances tested. Even the critical pair of dexamethasone and betamethasone isomers was almost completely resolved. Thanks to the over 10,000 full-width at half maximum (FWHM) mass resolution and high mass accuracy features of TOFMS 50 mDa window accurate mass chromatograms could be reconstructed for the individual analytes. Sensitive screening in human and calf urine samples fortified at the glucocorticosteroids minimum required performance limit (MRPL) of 30 microg L(-1) (human urine, sports doping) and 2 microg L(-1) (calf urine, veterinary control) could be obtained. The potential of UPLC/TOFMS for confirmatory analysis was shown by determining the accurate mass of all compounds and fragment ions upon in-source collision-induced dissociation (CID) at different energies. The exact mass measurement errors for all glucocorticosteroids were found to be within 6 ppm. Considering veterinary control, limits of detection (LOD) and limits of quantification (LOQ) were determined for most of the analytes in calf urine and found to range from 0.1 to 3.3 and from 0.4 to 4.4 microg L(-1), respectively. The method can be easily extended with other banned substances of interest, as demonstrated by the addition of 21 beta2-agonists to the original analyte mixture in urine, without causing any interferences.  相似文献   

13.
质谱技术在蛋白质、多肽化学中的应用   总被引:1,自引:0,他引:1  
李一莉  金善炜 《有机化学》1996,16(3):209-217
文中介绍了几种新的质谱技术: 快原子轰击质谱(fast atom bombardment-MS, 简称FAB-MS)、串联质谱(tandem mass spectrometry, 简称MS/MS)、电喷雾电离质谱(electrospray ionization-MS, 简称ESI-MS)和基质辅助的激光解吸电离飞行时间质谱(matrix assisted laser desorption ionization time offlight MS, 简称MALDI-TOF-MS), 这几种技术的相互补充使得质谱比较有效地用于蛋白质结构测定。文中例举了几个实例说明了它们在蛋白质的分子量测定,蛋白质和多肽的纯度鉴定, 糖肽的结构测定及特殊的N-端封闭的或一般的蛋白质和多肽的顺序测定中的应用。  相似文献   

14.
The S-nitrosylation of proteins is involved in the trafficking of nitric oxide (NO) in intra- and extracellular milieus. To establish a mass spectrometric method for identifying this post-translational modification of proteins, a synthetic peptide and transthyretin were S-nitrosylated in vitro and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The intact molecular ion species of nitrosylated compounds was identified in the ESI mass spectrum without elimination of the NO group. However, the labile nature of the S-NO bond was evident when the in-source fragmentation efficiently generated [M + H - 30](+) ions. The decomposition was prominent for multiply charged transthyretin ions with high charge states under ordinary ESI conditions, indicating that the application of minimum nozzle potentials was essential for delineating the stoichiometry of nitrosylation in proteins. With MALDI, the S-NO bond cleavage occurred during the ionization process, and the subsequent reduction generated [M + H - 29](+) ions.  相似文献   

15.
Protein identifications by peptide mass fingerprint analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed using microelectrospray ionization coupled to nano liquid chromatography (NanoLC), as well as using matrix-assisted laser desorption/ionization (MALDI). Tryptic digests of bovine serum albumin (BSA), diluted down to femtomole quantities, have been desalted by fast NanoLC under isocratic elution conditions as the high resolving power of FT-ICR MS enables peptides to be separated during the mass analysis stage of the experiment. The high mass accuracy achieved with FT-ICR MS (a few ppm with external calibration) facilitated unambiguous protein identification from protein database searches, even when only a few tryptic peptides of a protein were detected. Statistical confidence in the database search results was further improved by internal calibration due to increased mass accuracy. Matrix-assisted laser desorption/ionization and micro electrospray ionization (ESI) FT-ICR showed good mass accuracies in the low femtomole range, yet a better sensitivity was observed with MALDI. However, in higher femtomole ranges slightly lower mass accuracies were observed with MALDI FT-ICR than with microESI FT-ICR due to scan-to-scan variations of the ion population in the ICR cell. Database search results and protein sequence coverage results from NanoLC FT-ICR MS and MALDI FT-ICR MS, as well as the effect of mass accuracy on protein identification for the peptide mass fingerprint analysis are evaluated.  相似文献   

16.
Recently, two ionization sources, electrospray (ESI) and matrix-assisted laser desorption (MALDI) have been used in parallel to exploit their complementary nature and to increase proteome coverage. In this study, a method using bidimensional (2D) nanoLC coupled online with ESI quadrupole time-of-flight (Q-TOF) with the simultaneous collection of fractions for analyses by LC–MALDI Q-TOF–MS/MS was developed. A total of 39 bovine proteins were identified to a high degree of confidence. To help in differentiating peptide detection following ESI and MALDI with the same mass spectrometer, we compared physico–chemical characteristics of the peptides (molecular mass, charge and size) by principal component analysis (PCA) and analysis of variance on the results of PCA. More hydrophobic peptides with a wider mass coverage were identified when ESI was used, whereas more basic and smaller peptides were identified when MALDI was used. However, the generally accepted differentiation between ESI and MALDI according to the presence of basic amino acids residues Lys and Arg and the ratio Lys/Arg was not shown as significant in this study. Moreover, we pointed out the importance of the type of mass spectrometer used in complement to both ionization sources for achieving a global increase of proteome coverage.  相似文献   

17.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has been shown to be an effective technique for the characterization of organometallic, coordination, and highly conjugated compounds. The preferred matrix is 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), with radical ions observed. However, MALDI-TOFMS is generally not favored for accurate mass measurement. A specific method had to be developed for such compounds to assure the quality of our accurate mass results. Therefore, in this preliminary study, two methods of data acquisition, and both even-electron (EE+) ion and odd-electron (OE+.) radical ion mass calibration standards, have been investigated to establish the basic measurement technique. The benefit of this technique is demonstrated for a copper compound for which ions were observed by MALDI, but not by electrospray (ESI) or liquid secondary ion mass spectrometry (LSIMS); a mean mass accuracy error of -1.2 ppm was obtained.  相似文献   

18.
蛋白质分子量测定过程中的酸效应   总被引:2,自引:0,他引:2  
在基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)和电喷雾质谱(ESI-MS)测定蛋白质分子分子量的过程中,适当提高样品的酸度,可提高分析测试的灵敏度。在选定最佳样品分子浓度的基础上,通过适当加入三氟乙酸(TFA)来调整测试样品的酸度,准确测定了标准蛋白质-溶菌酶(lysozyme)的分子量,并且对蛋白质分子在“软电离”质谱中,受酸效应的影响进行了初步探讨。  相似文献   

19.
Operation of any mass spectrometer requires implementation of mass calibration laws to translate experimentally measured physical quantities into a m/z range. While internal calibration in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) offers several attractive features, including exposure of calibrant and analyte ions to identical experimental conditions (e.g. space charge), external calibration affords simpler pulse sequences and higher throughput. The automatic gain control method used in hybrid linear trap quadrupole (LTQ) FT-ICR-MS to consistently obtain the same ion population is not readily amenable to matrix-assisted laser desorption/ionization (MALDI) FT-ICR-MS, due to the heterogeneous nature and poor spot-to-spot reproducibility of MALDI. This can be compensated for by taking external calibration laws into account that consider magnetic and electric fields, as well as relative and total ion abundances. Herein, an evaluation of external mass calibration laws applied to MALDI-FT-ICR-MS is performed to achieve higher mass measurement accuracy (MMA).  相似文献   

20.
1‐Hydroxymethylene‐1,1‐bisphosphonic acids (or bisphosphonates) are compounds that have interesting pharmacological applications. However, few mass spectrometric investigations have been carried out to determine their fragmentation patterns. Herein, we evaluated different matrices for the study by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS) of the formation and fragmentation of the protonated, the cationized (MNa+ and MK+) and the deprotonated bisphosphonates. Some in‐source fragmentations were observed both in positive and in negative ion modes. The fragmentation patterns obtained in post‐source decay mode are also discussed. In contrast to previous electrospray ionization/multi‐stage mass spectrometry (ESI‐MSn) studies, some new fragmentation pathways were deduced and the effects of alkali ions on the fragmentation patterns were shown. The results summarized here completed the data previously recorded by ESI‐MSn and could be used for the characterization of bisphosphonates as alkali complexes in biological mixtures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号