首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wetting behavior of alkanes of medium chain length (e.g., pentane, hexane, and heptane) on water is more complex than the usually observed first-order wetting transition from partial to complete wetting by showing a sequence of two transitions. In this sequential-wetting scenario, a first-order transition from a microscopically thin to a mesoscopically thick layer of liquid on the substrate surface is followed by a continuous divergence of the film thickness upon increase of the temperature. This critical transition to complete wetting at T(w,c) is solely determined by long-range interactions between substrate and adsorbate, which are well-described by Dzyaloshinskii-Lifshitz-Pitaevskii [Adv. Phys. 10, 165 (1961)] theory in terms of the static dielectric constants and the refractive indices of the media involved. The first-order thin-thick transition, however, which occurs at a lower temperature T(w,1), results from an interplay of short-range and long-range forces and is notoriously more difficult to describe because a satisfactory theory of the short-range interactions between substrate and adsorbate is still missing. The approach presented in this paper attempts to account for the short-range interactions in an effective way: Within a Cahn-type [J. Chem. Phys. 66, 3667 (1977)] theory that has been augmented for long-range interactions and modified to treat the first layer of adsorbed molecules in a lattice-gas approach, the contact energy is deduced from the surface pressure, which in turn is calculated using a two-dimensional van der Waals equation of state and an expression for the Henry's law constant that was derived by Hirasaki [J. Adhes. Sci. Technol. 7, 285 (1993)]. The method uses only the dielectric properties of the isolated bulk media and simple assumptions on the size and the shape of the adsorbed alkane molecules and leads to satisfactory results for the transition temperatures T(w,1) and T(w,c).  相似文献   

2.
The amount of counterions, measured by means of X-ray photoelectron spectroscopy (XPS), in layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS), prepared from solutions with various NaCl concentrations, is shown to be greatly influenced by the film drying process: a smaller amount of counterions is observed in films dried after adsorption of each layer, when compared with films that were never dried during the film preparation. This is attributed to the formation of NaCl nanocrystals during the drying process which dissolve when the film is again immersed in the next polyelectrolyte solution. The presence of bonded water molecules was confirmed in wet films indicating that the counterions near the ionic groups are immersed in a water network. The number of counterions is dependent on the amount of salt in polyelectrolyte solutions in such a way that for a concentration of 0.2 M the relative amount of counterions attains saturation for both dried and wet samples, indicating that the process which leads the aggregation of counterions near of the ionic groups is not influenced by the drying process. Moreover, it is proven for wet samples that the increase in salt concentration leads to a decrease in the number of PAH ionized groups as predicted by the Muthukumar theory [J. Chem. Phys. 120 (2004) 9343] accounting for the counterion condensation on flexible polyelectrolytes.  相似文献   

3.
We use the framework of counterion condensation theory, in which deviations from linear electrostatics are ascribed to charge renormalization caused by collapse of counterions from the ion atmosphere, to explore the possibility of condensation on charged spheres, cylinders, and planes immersed in dilute solutions of simple salt. In the limit of zero concentration of salt, we obtain Zimm-Le Bret behavior: a sphere condenses none of its counterions regardless of surface charge density, a cylinder with charge density above a threshold value condenses a fraction of its counterions, and a plane of any charge density condenses all of its counterions. The response in dilute but nonzero salt concentrations is different. Spheres, cylinders, and planes all exhibit critical surface charge densities separating a regime of counterion condensation from states with no condensed counterions. The critical charge densities depend on salt concentration, except for the case of a thin cylinder, which exhibits the invariant criticality familiar from polyelectrolyte theory.  相似文献   

4.
The condensation of monovalent counterions and trivalent salt particles around strong rigid and flexible polyelectrolyte chains as well as spherical macroions is investigated by Monte Carlo simulations. The results are compared with the condensation theory proposed by Manning. Considering flexible polyelectrolyte chains, the presence of trivalent salt is found to play an important role by promoting chain collapse. The attraction of counterions and salt particles near the polyelectrolyte chains is found to be strongly dependent on the chain linear charge density with a more important condensation at high values. When trivalent salt is added in a solution containing monovalent salt, the trivalent cations progressively replace the monovalent counterions. Ion condensation around flexible chains is also found to be more efficient compared with rigid rods due to monomer rearrangement around counterions and salt cations. In the case of spherical macroions, it is found that a fraction of their bare charge is neutralized by counterions and salt cations. The decrease of the Debye length, and thus the increase of salt concentration, promotes the attraction of counterions and salt particles at the macroion surface. Excluded volume effects are also found to significantly influence the condensation process, which is found to be more important by decreasing the ion size.  相似文献   

5.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

6.
Pancakes     
The equilibrium state of a microdroplet spreading spontaneously on a solid surface is usually expected to be a compact monolayer if the liquid is nonvolatile, i.e., if the temperature is well below the 2-dimensional critical temperature T2C. More recently, it has been shown by de Gennes that this picture does not hold any more close to the wetting transition, where the initial spreading tension S0 tends to vanish. Thicker, stable layers are predicted, the famous “pancakes”, the thickness of which diverges at the wetting transition. There is another case where the monolayer picture fails: some liquids composed of amphiphilic molecules, although they do not wet the substrate, build an autophobic film on it. On hydrophobic surfaces, this film is a perfectly organized bilayer of molecules. We give examples of the three situations, with the following nicknames: “French pancake” for the compact monolayer, “Swedish pancake” for the bilayer, “American pancake” for the thick film.  相似文献   

7.
When a liquid droplet is put onto a surface, two situations distinguishable by the contact angle may result. If the contact angle is zero, the droplet spreads across the surface, a situation referred to as complete wetting. If the contact angle is between zero and 180°, the droplet does not spread, a situation called partial wetting. A wetting transition is a surface phase transition from partial to complete wetting. The wetting transition is generally first-order (discontinuous), implying a discontinuity in the first derivative of the surface free energy. As a consequence, at the transition a discontinuous jump in film thickness occurs from a molecularly thin to a thick film. We show here that the first-order nature of the transition can lead to the observation of metastable surface states and an accompanying hysteresis. The second part of this review deals with the exceptions to the first-order nature of the wetting transition. Two different types of continuous or critical wetting transitions have been reported, for which a discontinuity in a higher derivative of the surface free energy occurs. This consequently leads to a continuous divergence of the film thickness. The first type is long-range critical wetting, due to the long-range van der Waals forces. We show that this transition is preceded by the usual first-order wetting transition, which, however, is not achieved completely. This leads to the existence of a new intermediate wetting state, in which droplets coexist with a mesoscopic film: frustrated complete wetting. The film thickness diverges continuously from this mesoscopic film to a thick film. The second type of continuous transition is short-range critical wetting, for which the layer thickness diverges continuously all the way from a microscopic to a macroscopically thick film. This transition is interesting, as renormalization-group studies predict non-universal behaviour for the critical exponents characterizing the wetting transition. The experimental results, however, show mean field behaviour, the reason for which remains unclear.  相似文献   

8.
We have employed the density functional theory formalism to investigate the nematic-isotropic capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid crystal molecules (hybrid cell). We analyze the behavior of the capillary transition as a function of the fluid-substrate interactions and the pore width. In addition to the usual capillary transition between isotropiclike to nematiclike states, we find that this transition can be suppressed when one substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the system presents interfacelike states which allow us to continuously transform the nematiclike phase to the isotropiclike phase without undergoing a sharp phase transition. Two different mechanisms for the disappearance of the capillary transition are identified. When the director of the nematiclike state is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in a critical point. This scenario is analogous to the observed in Ising models when confined in slit pores with opposing surface fields which have critical wetting transitions. When the nematiclike state has a linearly distorted director field, the capillary transition continuously transforms in a transition between two nematiclike states.  相似文献   

9.
When a particle is placed in a thin liquid film on a planar substrate, the liquid either climbs or descends the particle surface to satisfy its wetting boundary condition. Analytical solutions for the film shape, the degree of particle immersion, and the downward force exerted by the wetting meniscus on the particle are presented in the limit of small Bond number. When line tension is significant, multiple solutions for the equilibrium meniscus position emerge. When the substrate is unyielding, a dewetting transition is predicted; that is, it is energetically favorable for the particle to rest on top of the film rather than remain immersed in it. If the substrate can bend, the energy to drive this bending is found in the limits of slow or rapid solid deflection. These results are significant in a wide array of disciplines, including controlled delivery of drugs to pulmonary airways, the probing of liquid film/particle interface properties using particles affixed to AFM tips and the positioning of small particles in thin films to create patterned media.  相似文献   

10.
The wetting of polydimethylsiloxane oil drops on the surfaces of anionic surfactant sodium dodecylsulfate solutions is studied systematically by changing the bulk surfactant concentration. The wetting state changes from complete wetting to pseudopartial wetting at 0.3 cmc (critical micelle concentration) surfactant concentration and there is a reentrant transition back to complete wetting at 1.4 cmc. The measured free energy is consistent with the prediction of the wetting theory. The interaction potential minimum of the two surfaces of the oil film disappears at the reentrant point, which is speculated to be an effect of micelle formation in the solution.  相似文献   

11.
Spreading of a tiny macroscopic droplet of a nonvolatile, completely wetting liquid over a flat solid is considered. A liquid in creeping is subjected to capillary forces and long-range molecular forces. The droplet may be surrounded with a precursor wetting film. This paper deals with the problem of determining of the microscopic parameter that influences the interface shape near the apparent line of wetting; this is regarded as the inverse problem in the hydrodynamics of wetting. If the system includes a precursor film, the microscopic parameter coincides with the maximum thickness of the film. A series of inverse equations for the microparameter is obtained, which relate it to, first, the current geometric parameters of the macroscopic drop part and, second, the spreading time. A method for determining how the microparameter depends on the wetting line speed is proposed. The theory expands the opportunity to perform macroscopic measurements and reveals additional parameters. The inverse relations may be used to experimentally study the growth of the maximum thickness of a precursor film during drop spreading. Copyright 2000 Academic Press.  相似文献   

12.
A fluid of hard spherocylinders of length-to-breadth ratio L/D=5 confined between two identical planar, parallel walls--forming a pore of slit geometry--has been studied using a version of the Onsager density-functional theory. The walls impose an exclusion boundary condition over the particle's centers of mass, while at the same time favoring a particular anchoring at the walls, either parallel or perpendicular to the substrate. We observe the occurrence of a capillary transition, i.e., a phase transition associated with the formation of a nematic film inside the pore at a chemical potential different from micro(b)-the chemical potential at the bulk isotropic-nematic transition. This transition terminates at an Ising-type surface critical point. In line with previous studies based on the macroscopic Kelvin equation and the mesoscopic Landau-de Gennes approach, our microscopic model indicates that the capillary transition is greatly affected by the wetting and anchoring properties of the semi-infinite system, i.e., when the fluid is in contact with a single wall or, equivalently, the walls are at a very large distance. Specifically, in a situation where the walls are preferentially wetted by the nematic phase in the semi-infinite system, one has the standard scenario with the capillary transition taking place at chemical potentials less than micro(b) (capillary nematization transition or capillary ordering transition). By contrast, if the walls tend to orientationally disorder the fluid, the capillary transition may occur at chemical potentials larger than micro(b), in what may be called a capillary isotropization transition or capillary disordering transition. Moreover, the anchoring transition that occurs in the semi-infinite system may affect very decisively the confinement properties of the liquid crystal and the capillary transitions may become considerably more complicated.  相似文献   

13.
We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.  相似文献   

14.
The equilibrium structure of the finite, interphase interfacial region that exists between a liquid film and a bulk vapor is resolved by molecular dynamics simulation. Argon systems are considered for a temperature range that extends below the melting point. Physically consistent procedures are developed to define the boundaries between the interphase and the liquid and vapor phases. The procedures involve counting of neighboring molecules and comparing the results with boundary criteria that permit the boundaries to be precisely established. Two-dimensional radial distribution functions at the liquid and vapor boundaries and within the interphase region demonstrate the physical consistency of the boundary criteria and the state of transition within the region. The method developed for interphase boundary definitions can be extended to nonequilibrium systems. Spatial profiles of macroscopic properties across the interphase region are presented. A number of interfacial thermodynamic properties and profile curve-fit parameters are tabulated, including evaporation/condensation coefficients determined from molecular flux statistics. The evaporation/condensation coefficients away from the melting point compare more favorably with transition state theory than those of previous simulations. Near the melting point, transition theory approximations are less valid and the present results differ from the theory. The effects of film substrate wetting on evaporation/condensation coefficients are also presented.  相似文献   

15.
Equilibrium of a capillary meniscus near a wetting film on a solid in a gravitational field is considered. Unlike previous studies, the present study proves that the fine meniscus structure in a gravitational field is a universal feature—it takes place in a wide variety of problems. In the general case, the capillary meniscus is at a certain distance from the wetting film and does not intersect it. The relation for the minimum distance from the arbitrary meniscus to the solid generalizes the Derjaguin formula for a flat slit. An equation that optimally approximates the meniscus with due account of the contribution of the meniscus/film transition region is derived. A refined solution to the problem of a meniscus on a vertical plate is derived within the perturbation theory. Both gravity and nonuniformity of the vertical static film above a capillary–gravitational meniscus do not affect the minimum distance (the influence is less than 0.0001). A general method for solving sophisticated problems of capillary equilibrium in gravitational field is proposed.  相似文献   

16.
The transition from incomplete to complete wetting of the solid surface by a semidilute polymer solution coexisting at equilibrium with the very-dilute polymer solution was studied using the Canh–de Gennes theory under the conditions corresponding to the tricritical state of semidilute solution and strong adsorption of the chain units on a substrate. It was established that the wetting transition can occur as the first- or second-order phase transition or as the transition of tricritical wetting depending on the repulsion energy of segments that are on the substrate surface. Near the temperatures of these transitions, the character of the variations in the differences of surface concentrations that are established at the boundaries of the substrate with semidilute and dilute polymer solutions, as well as in the differences of interfacial tensions and the cosine of contact angle were determined. It was shown that the temperature of each of these phase transitions varies in proportion to the surface potential of the substrate and does not depend on the polymer molecular mass. The observed behavior differs essentially from that established near the critical point of a polymer–solvent system.  相似文献   

17.
The interaction parameters of Newton black soap films stabilized by NaDS, as derived from contact angle experiments, have been interpretated in terms of the structure and the interaction forces in the films. From the film thickness and the difference between the surface excess of the salt in the film and at the bulk surface it is concluded that (a) the diffuse double-layer overlap in the film is practically complete; (b) the film only contains absorbed DS ions and an equal amount of Na+ counterions, but no salt; and (c) the double layer at the bulk surface is still partly diffuse. A model for the structure of the NB films is proposed according to which the adsorbed DS ions with their counterions form a two-dimensional square lattice at each film surface. It is found that the interaction free energy of the NB films can be explained by taking into account the electrostatic interactions between the discrete ions in the two opposing surface lattices. The model of the NB film is qualitatively in agreement with the experimental results of other workers.  相似文献   

18.
The change in the morphology of a series of dicationic gemini surfactants C(14)H(29)(CH(3))(2)N(+)-(CH(2))(s)-N(+)(CH(3))(2)C(14)H(29), 2Br(-) (14-s-14; s=4-6) on their interaction with inorganic (KBr, KNO(3), KSCN) and organic salts (NaBenz, NaSal) have been thoroughly investigated by means of (1)H NMR spectral analysis and the results are well supported by viscosity measurements. The presence of salt counterions results in structural transition (spherical to nonspherical) of gemini micelles in aqueous solution. With an increase in salt concentration all the three gemini surfactants showed changes in their aggregate morphology. This change is dependent on the nature and size of the added counterion. The effect of inorganic counterions on the micellar growth is observed to follow the Hofmeister series (Br(-) < NO(3)(-) < SCN(-)). The roles of organic counterions are discussed on the basis of probable solubilization sites of the substrate molecule in the gemini micelles, showing more growth in case of Sal(-) than Benz(-). The results are confirmed in terms of the obtained values of chemical shift (δ), line width at half height (lw), and relative viscosity (η(r)). Also, the growth of micelles was most pronounced for the gemini surfactant with the shortest spacer (s=4). This was attributed to the unique molecular structure of gemini surfactant micelles having flexible polymethylene spacer chain linking the twin polar headgroups.  相似文献   

19.
Molecular dynamics simulations are used to study the spreading of binary polymer nanodroplets in a cylindrical geometry. The polymers, described by the bead-spring model, spread on a flat surface with a surface-coupled Langevin thermostat to mimic the effects of a corrugated surface. Each droplet consists of chains of length 10 or 100 monomers with approximately 350,000 monomers total. The qualitative features of the spreading dynamics are presented for differences in chain length, surface interaction strength, and composition. When the components of the droplet differ only in the surface interaction strength, the more strongly wetting component forms a monolayer film on the surface even when both materials are above or below the wetting transition. In the case where the only difference is the polymer chain length, the monolayer film beneath the droplet is composed of an equal amount of short chain and long chain monomers even when one component (the shorter chain length) is above the wetting transition and the other is not. The fraction of short and long chains in the precursor foot depends on whether both the short and the long chains are in the wetting regime. Diluting the concentration of the strongly wetting component in a mixture with a weakly wetting component decreases the rate of diffusion of the wetting material from the bulk to the surface and limits the spreading rate of the precursor foot, but the bulk spreading rate actually increases when both components are present. This may be due to the strongly wetting material pushing out the weakly wetting material as it moves toward the precursor foot.  相似文献   

20.
The dynamics of liquid condensation on a substrate or within a capillary is studied when the wetting film grows via interface-limited growth. We use a phenomenological time-dependent Ginzburg-Landau (TDGL)-type model with long-range substrate potential. Using an order parameter, which does not directly represent the density, we can derive an analytic formula for the interfacial growth velocity that is directly related to the substrate potential. Using this analytic expression the growth of wetting film is shown to conform to a power-law-type growth, which is due to the presence of a long-range dispersion force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号