首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A t-butylphenylnitroxide (BPNO*) stable radical is attached to an electron donor-bridge-acceptor (D-B-A) system having well-defined distances between the components: MeOAn-6ANI-Ph(BPNO*)-NI, where MeOAn=p-methoxyaniline, 6ANI=4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph=phenyl, and NI=naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, BPNO*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge, respectively. Time-resolved optical and EPR spectroscopy show that BPNO* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Ph(BPNO*)-NI-*), resulting in slower charge recombination within the triradical, as compared to the corresponding biradical lacking BPNO*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and NI-* is not altered by the presence of BPNO*. However, the increased spin density on the bridge greatly increases radical pair (RP) intersystem crossing from the photogenerated singlet RP to the triplet RP. Rapid formation of the triplet RP makes it possible to observe a biexponential decay of the total RP population with components of tau=740 ps (0.75) and 104 ns (0.25). Kinetic modeling shows that the faster decay rate is due to rapid establishment of an equilibrium between the triplet RP and the neutral triplet state resulting from charge recombination, whereas the slower rate monitors recombination of the singlet RP to ground state.  相似文献   

2.
Appending a stable radical to the bridge molecule in a donor-bridge-acceptor system (D-B-A) is potentially an important way to control charge- and spin-transfer dynamics through D-B-A. We have attached a nitronyl nitroxide (NN*) stable radical to a D-B-A system having well-defined distances between the components: MeOAn-6ANI-Ph(NN*)-NI, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph = phenyl, and NI = naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, NN*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge. Using both time-resolved optical and EPR spectroscopy, we show that NN* influences the spin dynamics of the photogenerated triradical states (2,4)(MeOAn(+)*-6ANI-Ph(NN*)-NI(-)*), resulting in slower charge recombination within the triradical compared to the corresponding biradical lacking NN*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn(+)(*) and NI(-)(*) is not altered by the presence of NN*, which only accelerates radical pair intersystem crossing. Charge recombination within the triradical results in the formation of (2,4)(MeOAn-6ANI-Ph(NN*)-(3)NI), in which NN* is strongly spin-polarized. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, net spin polarization appears on NN* with the same time constant as describes the photogenerated radical ion pair decay. This effect is attributed to antiferromagnetic coupling between NN* and the local triplet state (3)NI, which is populated following charge recombination. This requires an effective switch in the spin basis set between the triradical and the three-spin charge recombination product having both NN* and (3)NI present.  相似文献   

3.
The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.  相似文献   

4.
The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination rates in these molecules obey an exponential distance dependence with beta = 0.5 +/- 0.1 A(-)(1). This technique is very sensitive to small changes in the electronic interaction between the two radicals and can be used to probe subtle structural differences between radical ion pairs produced from photoinduced electron transfer reactions.  相似文献   

5.
We have synthesized a series of structurally related, covalently linked electron donor-acceptor triads having highly restricted conformations to study the effects of radical ion pair (RP) structure, energetics, and solvation on charge recombination. The chromophoric electron acceptor in these triads is a 4-aminonaphthalene-1,8-dicarboximide (6ANI), in which the 4-amine nitrogen atom is part of a piperazine ring. The second nitrogen atom of the piperazine ring is part of a para-substituted aniline donor, where the para substituents are X = H, OMe, and NMe(2). The imide group of 6ANI is linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) electron acceptor across a phenyl spacer in a meta relationship. The triads undergo two-step photoinduced electron transfer to yield their respective XAn(*)(+)-6ANI-Ph-NI(*)(-) RP states, which undergo radical pair intersystem crossing followed by charge recombination to yield (3)NI. Time-resolved electron paramagnetic resonance experiments on the spin-polarized RPs and triplet states carried out in toluene and in E-7, a mixture of nematic liquid crystals (LCs), show that for all three triads, the XAn(*)(+)-6ANI-Ph-NI(*)(-) RPs are correlated radical pairs and directly yield values of the spin-spin exchange interaction, J, and the dipolar interaction, D. The values of J are all about -1 mT and show that the LC environment most likely enforces the chair conformation at the piperazine ring, for which the RP distance is larger than that for the corresponding boat conformation. The values of D yield effective RP distances that agree well with those calculated earlier from the spin distributions of the radical ions. Within the LC, changing the temperature shows that the CR mechanism can be changed significantly as the energy levels of the RPs change relative to that of the recombination triplet.  相似文献   

6.
The electron spin-spin exchange interaction, 2J, in radical pairs (RPs) is exquisitely sensitive to the details of molecular structure and can thus serve as an important probe of structural dynamics in RPs of potential interest to photonic and electronic devices. Photoinitiated ultrafast two-step charge separation produces (1)(MeOAn(+)(*)-6ANI-NI(-)(*)), where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, and NI = naphthalene-1,8:4,5-bis(dicarboximide). Radical pair intersystem crossing subsequently produces (3)(MeOAn(+)(*)-6ANI-NI(-)(*)), and the total RP population decays with approximately 10 ns lifetime at 140 K, which increases to nearly 30 ns at 300 K in toluene. The activation energy observed for this process is negative and can be explained by a mechanism involving a conformational preequilibrium of the RP followed by charge recombination. Over the same temperature range, the magnetic field effect (MFE) on yield of the triplet recombination product, MeOAn-6ANI-(3)()NI, yields the magnitude of 2J, which directly monitors the superexchange electronic coupling for charge recombination. A single resonance in the MFE plot is observed at 300 K, which splits into two resonances at temperatures below 230 K, suggesting that there are two distinct groups of RP conformations at low temperature. The magnitude of 2J for the lower field resonance (10 mT) at 140 K is 5 times smaller than that of the high field resonance. At 300 K the equilibrium is shifted almost entirely to the set of conformers with the stronger electronic coupling. The motion that couples these two groups of conformations is the motion that most effectively gates the donor-acceptor electronic coupling.  相似文献   

7.
8.
Intersystem crossing involving photogenerated strongly spin exchange-coupled radical ion pairs in a series of donor-bridge-acceptor molecules was examined. These molecules have a 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) donor either connected directly or connected by a phenyl bridge (Ph), to pyromellitimide (PI), 1 and 2, respectively, or naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptors, 3 and 4, respectively. Femtosecond transient optical absorption spectroscopy shows that photodriven charge separation produces DMJ(+?)-PI(-?) or DMJ(+?)-NI(-?) quantitatively in 1-4 (τ(CS) ≤ 10 ps), and that charge recombination occurs with τ(CR) = 268 and 158 ps for 1 and 3, respectively, and with τ(CR) = 2.6 and 10 ns for 2 and 4, respectively. Magnetic field effects (MFEs) on the neutral triplet state yield produced by charge recombination were used to measure the exchange coupling (2J) between DMJ(+?) and PI(-?) or NI(-?), giving 2J > 600 mT for 1-3 and 2J = 170 mT for 4. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy revealed that the formation of (3)*An upon charge recombination occurs by spin-orbit charge transfer intersystem crossing (SOCT-ISC) and/or radical-pair intersystem crossing (RP-ISC) mechanisms with the magnitude of 2J determining which triplet formation mechanism dominates. SOCT-ISC is the exclusive triplet formation mechanism in 1-3, whereas both RP-ISC and SOCT-ISC are active for 4. The triplet sublevels populated by SOCT-ISC in 1-4 depend on the donor-acceptor geometry in the charge separated state. This is consistent with the fact that the SOCT-ISC mechanism requires the relevant donor and acceptor orbitals to be nearly perpendicular, so that electron transfer results in a large orbital angular momentum change that must be compensated by a fast spin flip to conserve overall system angular momentum.  相似文献   

9.
Understanding how the electronic structures of electron donor-bridge-acceptor (D-B-A) molecules influence the lifetimes of radical ion pairs (RPs) photogenerated within them (D+*-B-A-*) is critical to designing and developing molecular systems for solar energy conversion. A general question that often arises is whether the HOMOs or LUMOs of D, B, and A within D+*-B-A-* are primarily involved in charge recombination. We have developed a new series of D-B-A molecules consisting of a 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) electron donor linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor via a series of Phn oligomers, where n = 1-4, to give DMJ-An-Phn-NI. The photoexcited charge transfer state of DMJ-An acts as a high-potential photoreductant to rapidly and nearly quantitatively transfer an electron across the Phn bridge to produce a spin-coherent singlet RP 1(DMJ+*-An-Phn-NI-*). Subsequent radical pair intersystem crossing yields 3(DMJ+*-An-Phn-NI-*). Charge recombination within the triplet RP then gives the neutral triplet state. Time-resolved EPR spectroscopy shows directly that charge recombination of the RP initially produces a spin-polarized triplet state, DMJ-An-Phn-3*NI, that can only be produced by hole transfer involving the HOMOs of D, B, and A within the D-B-A system. After the initial formation of DMJ-An-Phn-3*NI, triplet-triplet energy transfer occurs to produce DMJ-3*An-Phn-NI with rate constants that show a distance dependence consistent with those determined for charge separation and recombination.  相似文献   

10.
As a model for riboflavin, lumiflavin was investigated using density functional theory methods (B3LYP/6-31G* and B3LYP/6-31+G**) with regard to the proposed cascade of intermediates formed after excitation to the triplet state, followed by electron-transfer, proton-transfer, and radical[bond]radical coupling reactions. The excited triplet state of the flavin is predicted to be 42 kcal/mol higher in energy than the singlet ground state, and the pi radical anion lies 45.1 kcal/mol lower in energy than the ground-state flavin and a free electron in the gas phase. The former value compares to a solution-phase triplet energy of 49.8 kcal/mol of riboflavin. For the radical anion, the thermodynamically favored position to accept a proton on the flavin ring system is at N(5). A natural population analysis also provided spin density information for the radicals and insight into the origin of the relative stabilities of the six different calculated hydroflavin radicals. The resulting 5H-LF* radical can then undergo radical[bond]radical coupling reactions, with the most thermodynamically stable adduct being formed at C(4'). Vibrational spectra were also calculated for the transient species. Experimental time-resolved infrared spectroscopic data obtained using riboflavin tetraacetate are in excellent agreement with the calculated spectra for the triplet flavin, the radical anion, and the most stable hydroflavin radical.  相似文献   

11.
The photophysical properties of bis-1,8-naphthalimide (NI-L-NI) dyads with different linkers ( L = -C 3H 6-, -C 4H 8-, -C 6H 12-, -C 8H 16-, and -C 9H 18-) as well as the reference NI derivative (NI-C 7H 15) were investigated in CH 3CN and H 2O/CH 3CN (v/v = 1:9). The normal fluorescence peak of (1)NI*-L-NI was observed at 379 nm together with a broad emission at longer wavelength both in aprotic CH 3CN and in H 2O/CH 3CN, which is assigned to an excimer, (1)(NI-L-NI)*. The excimer emission maximum was blue-shifted with increasing length of the linker. The photoinduced electron-transfer process of NI-L-NI was also investigated in both solvents by using nanosecond-laser flash photolysis. The T 1-T n absorption band for (3)NI*-L-NI was observed around 470 nm in both solvents. In H 2O/CH 3CN, NI-L-NI is solvated with H 2O in the ground state to exist as solvated NI-L-NI. In the excited triplet state, the NI radical anion (NI (*-)) was generated via the intramolecular quenching of (3)NI*-L-NI by another NI moiety. The solvated NI (*-)-L-NI may undergo the proton abstraction process to give NI(H) (*)-L-NI, which can be confirmed by the transient absorption band at 410 nm. This band was not observed in pure aprotic CH 3CN.  相似文献   

12.
The impact of donor-acceptor electronic coupling and bridge energetics on the preference for hole or electron transfer leading to charge recombination in a series of donor-bridge-acceptor (D-B-A) molecules was examined. In these systems, the donor is 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) and acceptor is naphthalene-1,8:4,5-bis(dicarboximide) (NI), while the bridges are either oligo(p-phenyleneethynylene) (PE(n)P, where n = 1-3) 1-3 or oligo(2,7-fluorenone) (FN(n), where n = 1-3) 4-6. Photoexcitation of 1-3 and 4-6 produces DMJ(+?)-An-PE(n)P-NI(-?) and DMJ(+?)-An-FN(n)-NI(-?), respectively, which undergo radical pair intersystem crossing followed by charge recombination to yield both (3*)An and (3*)NI, which are observed by time-resolved electron paramagnetic resonance (TREPR) spectroscopy. (3*)NI is produced by hole transfer from DMJ(+?) to NI(-?), while (3*)An is produced by electron transfer from NI(-?) to DMJ(+?), using the agency of the bridge HOMOs and LUMOs, respectively. By monitoring the initial population of (3*)NI and (3*)An in 1-6, the data show that charge recombination occurs preferentially by selective hole transfer when the bridge is PE(n)P, while it occurs by preferential electron transfer when the bridge is FN(n). Over time, the initial population of (3*)NI decreases, while that of (3*)An increases, indicating that triplet-triplet energy transfer (TEnT) occurs. The observed distance dependence of TEnT from (3*)NI to An is weakly exponential with a decay parameter β = 0.08 ?(-1) for the PE(n)P series and β = 0.03 ?(-1) for the FN(n) series. In the PE(n)P series, this weak distance dependence is attributed to a transition from the superexchange regime to hopping transport as the energy gap for triplet energy injection onto the bridge becomes significantly smaller as n increases, while in the FN(n) series the corresponding energy gap is small for all n resulting in triplet energy transport by the hopping mechanism.  相似文献   

13.
The photochromic ligand bis(terpyridyl)hexaarylbiimidazole (bistpy-HABI) and the Fe(II) complex of bistpy-HABI with formula [{Fe(tpy)}2.bistpy-HABI](PF6)4.4H2O were synthesized and characterized. Bistpy-HABI is readily cleaved into a pair of terpyridyltriphenylimidazolyl radicals (tpy-TPI*) on irradiation with UV light. This photochemical reaction is completely reversible, and the light-induced radicals can thermally recombine to form bistpy-HABI in the dark. [{Fe(tpy)}2.bistpy-HABI]4+ is the first example of a transition-metal complex of an HABI derivative and was found to show photochromic reaction in solution. The spin state of the light-induced radical pair in a frozen matrix was investigated by ESR spectroscopy. The triplet state of the light-induced radical pair from [{Fe(tpy)}2.bistpy-HABI]4+, as well as that from bistpy-HABI, was confirmed to be a ground state or nearly degenerated with a singlet state. Kinetic studies on the radical recombination reaction in solution elucidated the decrease in the activation energy by forming the Fe(II) complex. This is the first observation of a decrease in the activation energy of the radical recombination reaction by the formation of a metal-coordinated radical complex. The syntheses, photochemical properties, and spin states of bistpy-HABI and [{Fe(tpy)}2.bistpy-HABI](PF6)4 are discussed.  相似文献   

14.
Photoinduced electron transfer (PET) processes of 1,8-naphthalimide-linker-phenothiazine (NI-L-PTZ) dyads have been investigated using the nanosecond- and picosecond-transient absorption measurements. Two kinds of linker were introduced, i.e., polymethylene-linked dyad (NI-C8-PTZ and NI-C11-PTZ) and a poly(ethyl ether)-linked one (NI-O-PTZ). The 355 nm pulsed laser excitation of NI-C8-PTZ, NI-C11-PTZ, and NI-O-PTZ in acetonitrile produced NI radical anion (NI*-) and PTZ radical cation (PTZ*+) with the absorption bands around 420 and 520 nm, respectively, through charge transfer from PTZ to NI in the singlet excited state (NI(S1)) as well as in the triplet excited states (NI(T1)) in acetonitrile. On the other hand, the charge transfer process occurred only from NI(S1) in nonpolar solvents. The rates of charge transfer and charge recombination processes largely depended on the solvent polarity and they are affected by the length of linkers and electronic coupling through polyether linker. The PET mechanism is discussed in terms of the free energy change for the charge transfer.  相似文献   

15.
The singlet and triplet states of the anthralin (1,8-dihydroxy-9-anthrone) dehydrodimer have been produced selectively in benzene via pulsed laser excitation and pulse radiolysis respectively. The lifetime of S1 is less than or equal to 30 ps, that of T1 short but unspecified. Both states fragment spontaneously to yield a pair of anthralin radicals. The singlet radical pair predominantly undergoes geminate recombination within the solvent cage. In contrast, the corresponding triplet radical pair undergoes essentially exclusive cage escape to give the anthralin free radical (lambda max 370, 490 and 720 nm) which recombines under normal diffusive conditions. Both recombination processes lead, at least in part, to one or more species which have been assigned as tautomeric forms of the original dimer. The anthralin free radical in benzene is insensitive to the vitamin E model 6-hydroxy-2,2,5,7,8-pentamethylchroman and reacts only slowly with oxygen.  相似文献   

16.
The photoreduction of 9,10-anthraquinone (AQ), the 2-methyl, 2-ethyl, 2,3-dimethyl, 1,4-difluoro, 1-chloro and 1,8-dichloro derivatives as well as 1,4,4a,9a-tetrahydroanthraquinone, 1,2-benzanthraquinone and 6,13-pentacenequinone in nonaqueous solution at room temperature was studied by time-resolved UV-visible spectroscopy. Upon 308 nm excitation of AQ the triplet state reacts with alcohols and triethylamine (TEA). The rate constant of triplet quenching by amines is close to the diffusion-controlled limit. The semiquinone radical *QH/ Q*- is the main intermediate, and the half-life of the second-order decay kinetics depends significantly on the donor and the medium. Photoinduced charge separation after electron transfer from amines to the triplet state of AQ in acetonitrile and the subsequent charge recombination or neutralization also were measured by transient conductivity. The maximum quantum yield, lambdairr = 254 nm, of photoconversion into the strongly fluorescing 9,10-dihydroxyanthracenes is close to unity. The fluorescence with maximum at 460-480 nm and a lifetime of 20-30 ns disappears as a result of a complete recovery into AQ, when the dihydroxyanthracenes are exposed to oxygen. The mechanisms of photoreduction of parent AQ in acetonitrile by 2-propanol and in benzene and acetonitrile by TEA are discussed. The effects of AQ follow essentially the same pattern. The various functions of oxygen, e.g. (1) quenching of the triplet state; (2) quenching of the semiquinone radical, thereby forming HO2*/O2*- radicals; and (3) trapping of the dihydroxyanthracenes are outlined.  相似文献   

17.
The intermolecular photoinduced electron transfer (PET) processes of 1,8-naphthalimide (NI) derivatives including NI-linker-phenothiazine dyads were investigated in a protic H(2)O/CH(3)CN (v/v=1:1) solvent using ns-laser flash photolysis with 355 nm-laser excitation. NI derivatives are surrounded by H(2)O in the ground state in H(2)O/CH(3)CN. The T(1)-T(n) absorption band of (3)NI* was observed at around 470 nm. The transient absorption band at around 410 nm increased concomitantly with the decay of (3)NI* in H(2)O/CH(3)CN. This implies that hydrated NI anion radical (NI*(-)) is primarily generated via the quenching of (3)NI* by NI at the diffusion control rate. This intermolecular PET did not occur in aprotic CH(3)CN. The formation and decay times of NI*(-) showed strong dependence on the concentration of NI. Then, we suggest that NI*(-) could undergo proton abstraction to give ketyl radical species of NI [NI(H)*] in H(2)O/CH(3)CN.  相似文献   

18.
以实验合成的联吖叮氮氧自由基分子为母体, 设计了7个自由基分子. 采用密度泛函理论(DFT) UB3LYP/6-31g(d,p)方法对这些自由基分子不同自旋态的稳定性和非线性光学(NLO)系数进行计算. 结果表明, 联吖叮氮氧自由基分子及其衍生物三重态为稳定基态, 符合自旋极化规则. 引入给吸电子取代基使自由基体系的极化率αs与二阶超极化率γs值有所增大, 且基团的给吸电子能力越强, αs和γs值增加越明显; 对于一阶超极化率βtot, 自由基体系处于单重态时, 取代基的影响较大. 所有自由基分子三重态的NLO系数都小于单重态, 表明可以通过控制体系的自旋多重度来调节体系的NLO性质.  相似文献   

19.
We show a new approach to manipulating the through‐space spin–spin interaction by utilizing the confined cavity of a self‐assembled M6L4 coordination cage. The coordination cage readily encapsulates stable organic radicals in solution, which brings the spin centers of the radicals closer to each other. In sharp contrast to the fact that the radical in solution in the absence of the cage is in a doublet state, in the presence of the cage through‐space spin–spin interaction is induced through cage‐encapsulation effects in solution as well as in the solid state, resulting in the triplet state of the complex. These results were confirmed by ESR spectroscopy and X‐ray crystallography. The quantity of triplet species generated by encapsulation in the cage increases with increasing affinity of the radicals to the cage. We estimated the affinity between several types of guests and the cage in solution by cyclic voltammetry. We also demonstrate that the through‐space interaction of organic radicals within the self‐assembled coordination cage can be controlled by external stimuli such as heat or pH.  相似文献   

20.
The photochemical processes of aromatic amino acids were investigated in aqueous solution using acetone as photosensitizer by KrF (248 nm) laser flash photolysis. Laser-induced transient species were characterized according to kinetic analysis and quenching experiments. The intermediates recorded were assigned to the excited triplet state of tryptophan, the radicals of tryptophan and tyrosine. The excited triplet state of tryptophan produced via a triplet-triplet excitation transfer and the radicals arising from electron transfer reaction has been identified. Neither electron transfer nor energy transfer between triplet acetone and phenylalanine can occur in photolysis of phenylalanine aqueous solution which contains acetone. Furthermore, triplet acetone-induced radical transformation: Trp/N-Tyr→Trp-Tyr/O was observed directly in photolysis of dipeptide (Trp-Tyr) aqueous solution containing acetone, and the transformation resulting from intramolecular electron transfer was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号