首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophosphatidylcholine (LPC) is a bioactive lipid generated by phospholipase A2-mediated hydrolysis of phosphatidylcholine. In the present study, we demonstrate that LPC stimulates phospholipase D2 (PLD2) activity in rat pheochromocytoma PC12 cells. Serum deprivation induced cell death of PC12 cells, as demonstrated by decreased viability, DNA fragmentation, and increased sub-G1 fraction of cell cycle. LPC treatment protected PC12 cells partially from the cell death and induced neurite outgrowth of the cells. Overexpression of PLD2 drastically enhanced the LPC-induced inhibition of apoptosis and neuritogenesis. Pretreatment of the cells with 1-butanol, a PLD inhibitor, completely abrogated the LPC-induced inhibition of apoptosis and neurite outgrowth in PC12 cells overexpressing PLD2. These results indicate that LPC possesses the neurotrophic effects, such as anti-apoptosis and neurite outgrowth, through activation of PLD2.  相似文献   

2.
Extracellular ATP has been known to modulate various cellular responses including mitogenesis, secretion and morphogenic activity in neuronal cells. In the ATP-induced morphogenic activity, focal adhesion kinase(s) such as Fak have been suggested to play a critical role. Binding of ATP to its specific cell surface receptor in PC12 cells induces phospholipase D (PLD) activity. However, the role of PLD on ATP-induced Fak activation in PC12 cells remains unclear. In this study, we investigated the role of PLD on the ATP-induced Fak activation and paxillin phosphorylation using two established cell lines: wild type PLD2- and lipase-inactive mutant PLD2-inducible PC12 cells. Stimulation of cells with ATP caused PLD2 activation via classical protein kinase C activation. ATP also induced Fak activation, and paxillin phosphorylation, and were dramatically reduced by wild type PLD2 overexpression but not by lipase-inactive mutant PLD2 overexpression. When the PC12 cells were pretreated with propranolol, a specific inhibitor for phosphatidic acid phosphohydrolase resulting in the accumulation of PA, ATP-induced Fak activation and paxillin phosphorylation were also reduced. We found that inhibition of tyrosine phosphatases by pervanadate completely blocked PLD2-dependent Fak and paxillin dephosphorylation. Taken together, we suggest that PLD2 activity might play a negative role in ATP-induced Fak and paxillin phosphorylation possibly through tyrosine phosphatases.  相似文献   

3.
Elevated expression of protein casein kinase II (CKII) stimulated basal phospholipase D (PLD) activity as well as PMA-induced PLD activation in human U87 astroglioma cells. Moreover, CKII-selective inhibitor, emodin and apigenin suppressed PMA-induced PLD activation in a dose-dependent manner as well as basal PLD activity, suggesting the involvement of CKII in the activation of both PLD1 and PLD2. CKII was associated with PLD1 and PLD2 in co-transfection experiments. Furthermore, CKII induced serine/threonine phosphorylation of PLD2 in vivo, and the multiple regions of PLD2 were phosphorylated by CKII in vitro kinase assay using glutathione S-transferase-PLD2 fusion protein fragments. Elevated expression of CKII or PLD increased cell proliferation but pretreatment of cells with 1-butanol suppressed CKII-induced cell proliferation. These results suggest that CKII is involved in proliferation of U87 cells at least in part, through stimulation of PLD activity.  相似文献   

4.
A20 murine lymphoma cells undergoing Fas-mediated apoptosis showed increase in the activity of phospholipase D (PLD), which is involved in proliferative or mitogenic cellular responses. Using A20 cell lines that were resistant to Fas-induced apoptosis, we investigated the differential effects of Fas cross-linking on PLD activity and sphingolipid metabolism. The basal PLD activities in all of the selected three Fas-resistant clones (#5, #8, and #11) were about 2~4 folds higher than that of wild type A20 cells. Among the PLD isoforms, PLD2 expression was increased in all of the selected Fas-resistant clones. The Fas downstream signaling events triggered by Fas cross-linking, including the activations of PLD, phosphatidylcholine-specific phospholipase C (PC-PLC), sphingomyelinase (SMase), the increase in diacylglycerol (DAG) and protein phosphorylation levels, and the translocation of protein kinase C to membrane were not changed in both of Fas-resistant clone #5 and #8. In contrast, Fas cross-linking stimulated the activity of PLD, PC-PLC, and SMase, translocation of PKC, and protein phosphorylation in Fas-resistant clone #11, similar to that of wild type cells. We also found that clone #11 had a different Fas sequence encoding Fas B which has been known to inhibit Fas-induced apoptosis. These findings suggest that increased PLD2 expression resulting in increased basal PLD activity and the blockade of Fas downstream signaling cascades may be involved to limit apoptosis induced by Fas cross-linking.  相似文献   

5.
The role of the mitogen-activated protein (MAP) kinase phosphatases (MKPs) in light-damaged cells is unclear. Therefore we investigated the involvement of MKP-1 in the regulation of apoptosis and cell survival mediated by MAP kinase pathways in light-damaged human retinal pigment epithelial cells (ARPE-19). Light dose-dependent changes in the expression of MKP-1 and in the phosphorylation status of the MAP kinases, c-Jun-N-terminal kinase (JNK) and p38 were demonstrated. Low light doses up to 2 J cm−2 led to an upregulation of MKP-1 which resulted in the prevention of cell death by inactivating JNK kinase. However, higher light doses (≥3 J cm−2) significantly reduced MKP-1 protein expression and subsequently led to an increased JNK kinase activity followed by a significant increase in cell death. JNK kinase inactivation by the JNK inhibitor SP600125 significantly reduced light-induced cell death, suggesting that the cytoprotective properties of MKP-1 are mediated mainly by the JNK MAP kinase pathway. Physiological concentrations of ascorbic acid or taurine were seen to prevent apoptosis and cell death in light-damaged ARPE-19 cells by reducing oxidative stress within cells, thus maintaining MKP-1 at high levels, leading to an inactivation of the JNK kinase pathway which resulted in an increased cell viability.  相似文献   

6.
Phospholipase D (PLD) activity is known to be related to oxidant-induced cellular signaling and membrane disturbance. Previously, an induction of PLD activity in various cell lines by X-ray irradiation was observed. In this study, we examined the effect of UVC radiation on the PLD activity in Vero 76 cells. At a dose of 10 kJ/m2 of UVC irradiation, the PLD activity was stimulated approximately 10-fold over the basal activity. This UVC-induced PLD activity was found to be dependent on the presence of extracellular calcium and was inhibited by catalase as well as amifostine-an intracellular thiol antioxidant. Pretreatments with Ro32-0432-a selective inhibitor of protein kinase C (PKC)-and downregulation of PKC by preincubation of phorbol 12-myristate 13-acetate significantly inhibited the UVC-induced PLD activity. UVC-stimulated PLD activity was observed only in murine PLD2 (mPLD2)-transfected Vero 76 cells and not in human PLD1 (hPLD1)-transfected cells. Transient incorporation of PKC with mPLD2 and the phosphorylation of mPLD2 by a and b forms of PKC by UVC irradiation were observed. These results suggest that the UVC-stimulated PLD activity in Vero 76 cells is mediated through transient phosphorylation of PLD2 by the translocation of PKC to PLD2.  相似文献   

7.
8.
As glucose is known to induce insulin secretion in pancreatic β cells, this study investigated the role of a phospholipase D (PLD)-related signaling pathway in insulin secretion caused by high glucose in the pancreatic β-cell line MIN6N8. It was found that the PLD activity and PLD1 expression were both increased by high glucose (33.3 mM) treatment. The dominant negative PLD1 inhibited glucose-induced Beta2 expression, and glucose-induced insulin secretion was blocked by treatment with 1-butanol or PLD1-siRNA. These results suggest that high glucose increased insulin secretion through a PLD1-related pathway. High glucose induced the binding of Arf6 to PLD1. Pretreatment with brefeldin A (BFA), an Arf inhibitor, decreased the PLD activity as well as the insulin secretion. Furthermore, BFA blocked the glucose-induced mTOR and p70S6K activation, while mTOR inhibition with rapamycin attenuated the glucose induced Beta2 expression and insulin secretion. Thus, when taken together, PLD1 would appear to be an important regulator of glucose-induced insulin secretion through an Arf6/PLD1/mTOR/p70S6K/Beta2 pathway in MIN6N8 cells.  相似文献   

9.
In spite of the importance of phospholipase D (PLD) in cell proliferation and tumorigenesis, little is known about the molecules regulating PLD expression. Thus, identification of small molecules inhibiting PLD expression would be an important advance for PLD-mediated physiology. We examined one such here, denoted "Triptolide", which was identified in a chemical screen for inhibitors of PLD expression using cell assay system based on measurement of PLD promoter activity. Triptolide significantly suppressed the expression of both PLD1 and PLD2 with sub-µM potency in MDA-MB-231 breast cancer cells as analyzed by promoter assay and RT-PCR. Moreover, triptolide abolished the protein level of PLD in a time and dose-dependent manner. Triptolide-induced PLD1 downregulation was also observed in all the cancer cells examined, suggesting a general phenomenon detected in various cancer cells. Decrease of PLD expression by triptolide suppressed both basal and PMA-induced PLD activity. In addition, triptolide inhibited activation of NFκB which increased PLD1 expression. Ultimately, downregulation of PLD by triptolide inhibited proliferation of breast cancer cells. Taken together, we demonstrate that triptolide suppresses the expression of PLD via inhibition of NFκB activation and then decreases cell proliferation.  相似文献   

10.
Growth factor-stimulated phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC), generating phosphatidic acid (PA) which may act as a second messenger during cell proliferation and survival. Therefore, PLD is believed to play an important role in tumorigenesis. In this study, a potential mechanism for PLD-mediated tumorigenesis was explored. Ectopic expression of PLD1 or PLD2 in human glioma U87 cells increased the expression of hypoxia-inducible factor-1α (HIF-1α) protein. PLD-induced HIF-1 activation led to the secretion of vascular endothelial growth factor (VEGF), a HIF-1 target gene involved in tumorigenesis. PLD induction of HIF-1α was significantly attenuated by 1-butanol which blocks PA production by PLD, and PA per se was able to elevate HIF-1α protein level. Inhibition of mTOR, a PA-responsive kinase, reduced the levels of HIF-1α and VEGF in PLD-overexpressed cells. Epidermal growth factor activated PLD and increased the levels of HIF-1α and VEGF in U87 cells. A specific PLD inhibitor abolished expression of HIF-1α and secretion of VEGF. PLD may utilize HIF-1-VEGF pathway for PLD-mediated tumor cell proliferation and survival.  相似文献   

11.
Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.  相似文献   

12.
Photodynamic therapy (PDT) can cause lethal photodamage by both direct and indirect mechanisms. Direct modes of cell death relate to nonspecific necrosis and the initiation of signaling pathways that elicit apoptosis, autophagy or both. In this report, effects of low-dose and high-dose PDT are explored, comparing sensitizers that localize in the endoplasmic reticulum (the porphycene termed CPO) or mitochondria (mesochlorin). To explore the role of autophagy, two cell lines were examined--the murine L1210 leukemia and an Atg7 knockdown derivative of L1210. The Atg7 gene is central to the process of autophagy. High-dose PDT with either sensitizer resulted in a substantial loss of the Bcl-2 protein. As Bcl-2 regulates both apoptosis and autophagy, loss of this protein can lead to initiation of either or both processes. Low-dose PDT with either sensitizer resulted in the initiation of apoptosis in the L1210/Atg7- cell line and a 20% loss of viability. In contrast, the same PDT dose led to the rapid appearance of autophagic cells in the L1210 line, less apoptosis and only a 5% loss of viability. These results are consistent with autophagy serving as a pro-survival response via the recycling of damaged organelles. At a higher PDT dose more apoptosis was again seen in the L1210/Atg7- line, but both cell lines exhibited comparable cytotoxicity in colony formation assays. We conclude that autophagy offers protection from the phototoxic effects of low-dose PDT, but can serve as an alternate death mode when the PDT dose is increased.  相似文献   

13.
Dendritic cells (DCs) play a key role in activating the immune response against invading pathogens as well as dying cells or tumors. Although the immune response can be initiated by the phagocytic activity by DCs, the molecular mechanism involved in this process has not been fully investigated. Trp-Lys-Tyr-Met-Val-Met-NH(2) (WKYMVM) stimulates the activation of phospholipase D (PLD) via Ca(2+) increase and protein kinase C activation in mouse DC cell line, DC2.4. WKYMVM stimulates the phagocytic activity, which is inhibited in the presence of N-butanol but not t-butanol in DC2.4 cells. Furthermore, the addition of phosphatidic acid, an enzymatic product of PLD activity, enhanced the phagocytic activity in DC2.4 cells. Since at least two of formyl peptide receptor (FPR) family (FPR1 and FPR2) are expressed in DC2.4 as well as in mouse bone marrow-derived dendritic cells, this study suggests that the activation of FPR family by WKYMVM stimulates the PLD activity resulting in phagocytic activity in DC2.4 cells.  相似文献   

14.
Phospholipase D (PLD) is an enzyme involved in signal transduction and widely distributed in mammalian cells. The signal transduction pathways and role for phospholipid metabolism during hormonal response in cortical collecting duct remain partly undefined. It has been reported that dexamethasone increases transepithelial transport in M-1 cells that are derived from the mouse cortical collecting duct. We investigated the expression and activity of PLD in M-1 cells. Basal PLD activity of M-1 cells cultured in the presence of dexamethasone (5 microM) was higher than in the absence of dexamethasone. Dexamethasone and ATP activated PLD in M-1 cells but phorbol ester did not stimulate PLD activity. Vasopressin, bradykinin, dibutyryl cyclic AMP, and ionomycin were ineffective in activating PLD of the cells. The PLD2 isotype was detected by immunoprecipitation but PLD1 was not detected in M-1 cells. Addition of GTPgammaS and ADP-ribosylation factor or phosphatidylinositiol 4,5-bisphosphate to digitonin-permeabilized cells did not augment PLD activity. In intact cells PLD activity was increased by sodium oleate but there was no significant change between dexamethasone treated- and untreated cells by oleate. These results suggest that at least two types of PLD are present in M-1 cells and PLD plays a role in the corticosteroid-mediated response of cortical collecting duct cells.  相似文献   

15.
Abstract The mode of cell death following photodynamic therapy was investigated from the perspective of programmed cell death or apoptosis. Human prostate carcinoma cells (PC3), human non-small cell lung carcinoma (H322a) and rat mammary carcinoma (MTF7) were treated by photodynamic therapy. An examination of extracted cellular DNA by gel electrophoresis showed the characteristic DNA ladder indicative of internucleosomal cleavage of DNA during apoptosis. The magnitude of the response and the photodynamic therapy dosage required to induce DNA fragmentation were different in PC3 and MTF7. The MTF7 cells responded with rapid apoptosis at the dose of light and drug that yielded 50% cell death (LD50). In contrast, PC3 showed only marginal response at the LD50 but had a marked response at the LD85. Thus, apoptosis did not ensue as quickly in PC3 as in MTF7. The H322a cells were killed by photodynamic therapy but failed to exhibit any apoptotic response. The results also suggested that apoptosis in these cell lines has a minor requirement for de novo protein synthesis and no requirement for de novo RNA synthesis. This study indicates that although apoptosis can occur during photodynamic therapy-induced cell death, this response is not universal for all cancer cell lines.  相似文献   

16.
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent histone deacetylase that plays diverse physiological roles. However, little is known about the regulation of SIRT1 activity. Here, we show that phospholipase D2 (PLD2), but not PLD1, selectively interacts with SIRT1 and increases the deacetylase activity of SIRT1. PLD2 does not interact with the other isozymes of SIRT (SIRT2–7). Two leucine residues in the LXXLL motif (L173 and L174) in the phox domain of PLD2 interact with the region essential for SIRT1 activity. PLD2 stimulates the SIRT1-mediated deacetylation of p53 independent of its lipase activity. In our study, mutagenesis of the LXXLL motif suppressed the interaction of PLD2 with SIRT1 and inhibited SIRT1-mediated p53 deacetylation and p53-induced transactivation of proapoptotic genes. Ultimately, overexpression of wild-type PLD2 but not that of LXXLL-mutant PLD2 protected cells against etoposide-induced apoptosis. Moreover, PLD2 did not protect against apoptosis induced by SIRT1 depletion under genotoxic stress. Collectively, our results suggest that PLD2 is a positive regulator of SIRT1 and modulates p53-mediated apoptosis via SIRT1.Subject terms: Lipid signalling, Cancer metabolism  相似文献   

17.
Differentiation of neuronal cells has been shown to accelerate stress-induced cell death, but the underlying mechanisms are not completely understood. Here, we find that early and sustained increase in cytosolic ([Ca2+]c) and mitochondrial Ca2+ levels ([Ca2+]m) is essential for the increased sensitivity to staurosporine-induced cell death following neuronal differentiation in PC12 cells. Consistently, pretreatment of differentiated PC12 cells with the intracellular Ca2+-chelator EGTA-AM diminished staurosporine-induced PARP cleavage and cell death. Furthermore, Ca2+ overload and enhanced vulnerability to staurosporine in differentiated cells were prevented by Bcl-XL overexpression. Our data reveal a new regulatory role for differentiation-dependent alteration of Ca2+ signaling in cell death in response to staurosporine.  相似文献   

18.
Photodynamic therapy (PDT) leads to the generation of cytotoxic oxygen species that appears to stimulate several different signaling pathways, some of which lead to cell death, whereas others mediate cell survival. In this context, we observed that PDT mediated by methyl-5-aminolevulinic acid as the photosensitizer resulted in over-expression of survivin, a member of the inhibitor of apoptosis (IAP) family that correlates inversely with patient prognosis. The role of survivin in resistance to anti-cancer therapies has become an area of intensive investigation. In this study, we demonstrate a specific role for survivin in modulating PDT-mediated apoptotic response. In our experimental system, we use a DNA vector-based siRNA, which targets exon-1 of the human survivin mRNA (pSil_1) to silence survivin expression. Metastatic T47D cells treated with both pSil_1 and PDT exhibited increased apoptotic indexes and cytotoxicity when compared to single-agent treated cells. The treatment resulted in increased PARP and caspase-3 cleavage, a decrease in the Bcl-2/Bak ratio and no participation of heat shock proteins. In contrast, the overexpression of survivin by a survivin-expressed vector increased cell viability and reduced cell death in breast cancer cells treated with PDT. Therefore, our data suggest that combining PDT with a survivin inhibitor may attribute to a more favorable clinical outcome than the use of single-modality PDT.  相似文献   

19.
Ferulic Acid (FA) is a highly abundant phenolic phytochemical which is present in plant tissues. FA has biological effects on physiological and pathological processes due to its anti-apoptotic and anti-oxidative properties, however, the detailed mechanism(s) of function is poorly understood. We have identified FA as a molecule that inhibits apoptosis induced by hydrogen peroxide (H2O2) or actinomycin D (ActD) in rat pheochromocytoma, PC12 cell. We also found that FA reduces H2O2-induced reactive oxygen species (ROS) production in PC12 cell, thereby acting as an anti-oxidant. Then, we analyzed FA-mediated signaling responses in rat pheochromocytoma, PC12 cells using antibody arrays for phosphokinase and apoptosis related proteins. This FA signaling pathway in PC12 cells includes inactivation of pro-apoptotic proteins, SMAC/Diablo and Bad. In addition, FA attenuates the cell injury by H2O2 through the inhibition of phosphorylation of the extracellular signal-regulated kinase (ERK). Importantly, we find that FA restores expression levels of brain-derived neurotrophic factor (BDNF), a key neuroprotective effector, in H2O2-treated PC12 cells. As a possible mechanism, FA increases BDNF by regulating microRNA-10b expression following H2O2 stimulation. Taken together, FA has broad biological effects as a neuroprotective modulator to regulate the expression of phosphokinases, apoptosis-related proteins and microRNAs against oxidative stress in PC12 cells.  相似文献   

20.
p21-activated kinase (PAK) targeting to the plasma membrane is essential for PC12 cell neurite outgrowth. Phospholipase C-gamma1 (PLC-gamma1) can mediate the PAK translocation in response to growth factors, since PLC-gamma1 binds to both tyrosine-phosphorylated receptor tyrosine kinases and PAK through its SH2 and SH3 domain, respectively. In the present study, we examined a potential role for PLC-gamma1 in the basic fibroblast growth factor (bFGF)-induced PAK translocation using stable PC12 cell lines that overexpress in a tetracycline-inducible manner either the wild-type FGFR-1 or the Y766F FGFR-1 mutant. Phosphatidylinositol hydrolysis was increased 6.5-fold in response to bFGF in the wild type cells but negligible in the mutant cells. The recombinant GST-PLC-gamma1 SH3 was able to bind to PAK1 but not GST alone. However, examination of PLC-gamma1 as an adaptor for translocation of PAK1 in cells showed that both cells transfected with pEGFP-PAK1 was able to differentiate for 24 h, as visualized by laser confocal microscopy. Translocation of PAK1 to growth cones occurs at similar levels in both wild and mutant cells. These results suggest that a protein(s) other than PLC-gamma1 is functionally relevant for PAK targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号