首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8–11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12–15; 9/10 of tumors; 94 % of variance) and β-turns (day 18–21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P?<?0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.  相似文献   

2.
Syntenin is a PDZ domain-containing adaptor protein that has been recently shown to regulate migration and invasion in several tumors. Small cell lung cancer (SCLC) is notorious for its invasiveness and strong potential for metastasis. We therefore studied the influence of syntenin on the invasiveness of SCLC. Immunohistochemistry in tumor tissues showed that syntenin was more frequently expressed in small cell carcinomas than other neuroendocrine tumors, such as carcinoids and neuroblastomas, suggesting that syntenin expression may be related to more aggressive forms of neuroendocrine tumors. In SCLC patients, syntenin overexpression in tumor cells was significantly associated with more extensive and advanced disease at the time of diagnosis (P=0.029). Overexpression of syntenin in SCLC cells that were intrinsically syntenin-low increased the invasiveness of cells and led to the induction of extracellular matrix (ECM)-degrading membrane type 1-matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase 2 (MMP2). In contrast, suppression of syntenin in syntenin-high cells was associated with the downregulation of MT1-MMP. Contrary to the results of previous studies using malignant melanomas and breast carcinomas, signaling cascades were shown to be further transduced through p38 MAPK and PI3K/AKT, with activation of SP1 rather than NF-κB, under circumstances not involving ECM interaction. In addition, the upstream molecule focal adhesion kinase was induced by syntenin activation, in spite of the absence of ECM interaction. These results suggest that syntenin might contribute to the invasiveness of SCLC and could be utilized as a new therapeutic target for controlling invasion and metastasis in SCLC.  相似文献   

3.
Lung adenocarcinoma (LUAD) is the second most common cancer, affecting both men and women. Fibrosis is a hallmark of LUAD occurring throughout progression with excess production of extracellular matrix (ECM) components that lead to metastatic cell processes. Understanding the ECM cues that drive LUAD progression has been limited due to a lack of tools that can access and report on ECM components within the complex tumor microenvironment. Here, we test whether low‐grade LUAD can be distinguished from normal lung tissue using a novel ECM imaging mass spectrometry (ECM IMS) approach. ECM IMS analysis of a tissue microarray with 20 low‐grade LUAD tissues and 20 normal lung samples from 10 patients revealed 25 peptides that could discriminate between normal and low‐grade LUAD using area under the receiver‐operating curve (AUC) ≥0.7, P value ≤.001. Principal component analysis demonstrated that 62.4% of the variance could be explained by sample origin from normal or low‐grade tumor tissue. Additional work performed on a wedge resection with moderately differentiated LUAD demonstrated that the ECM IMS analytical approach could distinguish LUAD spectral features from spectral features of normal adjacent lung tissue. Conventional liquid chromatography with tandem mass spectrometry (LC‐MS/MS) proteomics demonstrated that specific sites of hydroxylation of proline (HYP) were a main collagen post translational modification that was readily detected in LUAD. A distinct peptide from collagen 3A1 modified by HYP was increased 3.5 fold in low‐grade LUAD compared with normal lung tissue (AUC 0.914, P value <.001). This suggests that regulation of collagen proline hydroxylation could be an important process during early LUAD fibrotic deposition. ECM IMS is a useful tool that may be used to define fibrotic deposition in low‐grade LUAD.  相似文献   

4.
A 3D co-culture microfluidic device was developed to study the effects of ECM stiffness and TAMs on tumor cells migration.  相似文献   

5.
Glioblastoma multiforme (GBM) is a type of brain tumor that is most aggressive, proliferates rapidly and intensive invasion is governed by cell migration and destruction of the extracellular matrix. In the present study, we evaluated the antiproliferative efficacy of the synthesized silver chloride nanoparticles (AgCl-NPs) from Asparagus racemosus root extract against human glioblastoma stem cells (GSCs) and Ehrlich ascites carcinoma (EAC) cells. Biosynthesis of A. racemosus-AgCl-NPs was confirmed by color change, UV–visible spectroscopy and characterized by transmitted electron microscope, energy dispersive spectroscopy, x-ray powder diffraction and Fourier-transform infrared spectroscopy. The A. racemosus-AgCl-NPs inhibited GSCs and EAC cells growth with the IC50 values of 4.8 and 4.69 µg/ml, respectively. A. racemosus-AgCl-NPs induced apoptosis in GSCs which was confirmed by annexin V/PI assay, various genes expression, and caspase-3 protein expression as detected by the immunofluorometric assay. The expression level of the TLR9, NFκB, TNFα, p21 and IKK genes were increased consequently with the decrease of PARP, EGFR, NOTCH2, mTOR and STAT3 genes in GSCs as examined by real-time PCR. The cell cycle arrest at G0/G1 phase was detected by flow cytometry. In addition, A. racemosus-AgCl-NPs caused significant inhibition of EAC cells growth, reduced tumor burden, increased the survival of EAC-bearing mice and restored the hematological parameters when compared with the control mice. The synthesized AgCl-NPs inhibited the proliferation of GSCs in vitro with the induction of apoptosis and inhibited the growth of EAC cells in vivo in mice by reducing the tumor burden and increasing the survival periods.  相似文献   

6.
Native extracellular matrix (ECM) possesses the biochemical cues to promote cell survival. However, decellularized, the ECM loses its cell supporting mechanical integrity. We report, here, a new biohybrid vascular graft fabricated from a blend of polycaprolactone (PCL), poliglecaprone (PGC), and incorporated with human biomatrix as functional materials for vascular tissue interfacing applications, thus harnessing the biochemical cues from the ECM and the mechanical integrity of the polymer blends. The fabricated fibro-porous tubular small diameter graft (i.d. = 4 mm) from electrospun polymer blend was coated with HuBiogeltm, a cocktail of collagenous matrix derived from human placenta called . The compositional, morphological, and mechanical properties of graft were measured, analyzed, and compared with a non-coated tubular PCL/PGC graft using Fourier Transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). BCA assay was used to calculate the protein content and coating-uniformity throughout the hybrid graft. Mechanical properties such as tensile strength (1.6 MPa), Young's modulus (2.4 MPa), burst pressure (>1900 mmHg), and suture retention strength (2.3 N) of hybrid graft were found to be comparable to native blood vessels. Protein coating has improved the hydrophilicity and the biocompatibility (cell viability and cell-attachment) enhanced with human umbilical vein endothelial cells (HUVECs) seeded in vitro onto the lumen layer of the graft over two weeks. The overall results promise this new biohybrid graft to be a potential candidate for vascular tissue interface and regeneration.  相似文献   

7.
The tripeptide,Arg-Gly-Asp(RGD)motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM)and in the blood.HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations.MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h.Haematoxylin and Eosin(HE)staining and electromicroscope were used to observe the morphology of apoptotic cells.Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis.Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8.These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proli-feration of tumor HCT-8 cell,probably by the aid of inducing apoptosis of HCT-8 cell.  相似文献   

8.
In this work, we combined a newly developed matrix coating technique – matrix coating assisted by an electric field (MCAEF) and matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) to enhance the imaging of peptides and proteins in tissue specimens of human prostate cancer. MCAEF increased the signal‐to‐noise ratios of the detected proteins by a factor of 2 to 5, and 232 signals were detected within the m/z 3500–37500 mass range on a time‐of‐flight mass spectrometer and with the sinapinic acid MALDI matrix. Among these species, three proteins (S100‐A9, S100‐A10, and S100‐A12) were only observed in the cancerous cell region and 14 proteins, including a fragment of mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase kinase 2, a fragment of cAMP‐regulated phosphoprotein 19, 3 apolipoproteins (C‐I, A‐I, and A‐II), 2 S100 proteins (A6 and A8), β‐microseminoprotein, tumor protein D52, α‐1‐acid glycoprotein 1, heat shock protein β‐1, prostate‐specific antigen, and 2 unidentified large peptides at m/z 5002.2 and 6704.2, showed significantly differential distributions at the p < 0.05 (t‐test) level between the cancerous and the noncancerous regions of the tissue. Among these 17 species, the distributions of apolipoprotein C‐I, S100‐A6, and S100‐A8 were verified by immunohistological staining. In summary, this study resulted in the imaging of the largest group of proteins in prostate cancer tissues by MALDI‐MS reported thus far, and is the first to show a correlation between S100 proteins and prostate cancer in a MS imaging study. The successful imaging of the three proteins only found in the cancerous tissues, as well as those showing differential expressions demonstrated the potential of MCAEF‐MALDI/MS for the in situ detection of potential cancer biomarkers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Striae distensae (SD) or stretch marks are common linear scars of atrophic skin with disintegrating extracellular matrix (ECM) structures. Although fibroblasts contribute to the construction of ECM structure in SD, some studies have reported that mast cell degranulation causes the disruption of ECM in early SD lesions. Lagerstroemia indica flower (LIF) has traditionally been used in India as a diuretic. However, little is known about the effect and molecular action of Lagerstroemia indica flower extract (LIFE) on alleviating SD. This study evaluated the effects of LIFE on mast cell degranulation and the synthesis of ECM components in fibroblasts. LIFE inhibits the adhesion of rat basophilic leukemia (RBL) cells, RBL-2H3 on fibronectin (FN) and the expression of integrin, a receptor for FN, thereby reducing focal adhesion kinase (FAK) phosphorylation. In addition, LIFE attenuated the allergen-induced granules and cytokine interleukin 3 (IL-3) through the adhesion with FN. Moreover, the conditioned medium (CM) of activated mast cells decreases the synthesis of ECM components, and LIFE restores the abnormal expressions induced by activated mast cells. These results demonstrate that LIFE suppresses FN-induced mast cell activation and promotes the synthesis of ECM components in fibroblast, which indicates that LIFE may be a useful cosmetic agent for SD treatment.  相似文献   

10.
The promising potential of a RAD‐16 self‐assembly‐peptide hydrogel as a scaffold for tissue‐engineered cartilage was investigated. Within 3 weeks of in vitro culture, chondrocytes within the hydrogel produced a high amount of GAG and type‐II collagen, which are the components of cartilage‐specific extracellular matrix (ECM). With the culture time increased, toluidine‐blue staining for GAG and immuno‐histochemistry staining for type‐II collagen of the chondrocytes‐hydrogel composites became more intense. Analysis of the gene expression of the ECM molecules also confirmed the chondrocytes in the peptide hydrogel maintained their phenotype within 3 weeks of in vitro culture.

  相似文献   


11.
12.
13.
Trans-resveratrol is a natural polyphenol showing numerous biological properties, especially anti-tumoral and antioxidant activity. Among numerous resveratrol derivatives, aza-stilbenes, which bear an imine bound, show interesting biological activities. In the present study, we synthesized a series of imine analogs of trans-resveratrol (seven aza-stilbenes) following an easy and low-cost procedure of green chemistry. The toxicity of synthesized aza-stilbenes, which is currently unknown, was evaluated on murine neuronal N2a cells, comparatively to trans-resveratrol, by considering: cell density evaluated by staining with sulforhodamine 101; esterase activity, which is a criteria of cell viability, by staining with fluorescein diacetate; and transmembrane mitochondrial potential, which is known to decrease during cell death, by staining with DiOC6(3) using flow cytometry. In addition, the antioxidant activity was quantified with the KRL (Kit Radicaux Libres) assay, the DPPH (2,2′-diphenyl-1-picrylhydrazyl radical) assay and the FRAP (ferric reducing antioxidant power) assay. The PAOT (Pouvoir Antioxidant Total) score was also used. The aza-stilbenes provide different cytotoxic and antioxidant activities, which are either higher or lower than those of trans-resveratrol. Based on their cytotoxic and antioxidant characteristics, all synthesized aza-stilbenes are distinguished from trans-resveratrol.  相似文献   

14.
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross‐linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The interactions between endothelial cells and the underlying extracellular matrix regulate adhesion and cellular responses to microenvironmental stimuli, including flow-induced shear stress. In this study, we investigated the adhesion properties of primary porcine aortic endothelial cells (PAECs) and valve endothelial cells (PAVECs) in a microfluidic network. Taking advantage of the parallel arrangement of the microchannels, we compared adhesion of PAECs and PAVECs to fibronectin and type I collagen, two prominent extracellular matrix proteins, over a broad range of concentrations. Cell spreading was measured morphologically, based on cytoplasmic staining with a vital dye, while adhesion strength was characterized by the number of cells attached after application of shear stresses of 11, 110, and 220 dyn cm(-2). Results showed that PAVECs were more well spread on fibronectin than on type I collagen (P < 0.0001), particularly for coating concentrations of 100, 200, and 500 microg mL(-1). PAVECs also withstood shear significantly better on fibronectin than on collagen for 500 microg mL(-1). PAECs were more well spread on collagen compared to PAVECs (P < 0.0001), but did not have significantly better adhesion strength. These results demonstrate that cell adhesion is both cell-type and matrix dependent. Furthermore, they reveal important phenotypic differences between vascular and valvular endothelium, with implications for endothelial mechanobiology and the design of microdevices and engineered tissues.  相似文献   

16.
Honokiol is an active compound purified from magnolia that has been shown to induce cell differentiation, apoptosis, and anti-angiogenesis effects, as well as an enhancement in tumor growth delay in combination with chemotherapeutic agents in several mouse xenograft models. Our goal was to investigate the radiosensitization effect of honokiol on lung carcinoma. The radiosensitization effect of liposomal honokiol in Lewis lung carcinoma cells (LL/2) was analyzed using an in vitro clonogenic survival assay. For an in vivo study, Lewis lung carcinoma-bearing C57BL/6 mice were treated with either liposomal honokiol at 25 mg/kg or 5 Gy of single tumor radiation, or a combination of both over 12 days of treatment. The tumor growth delay and the survival time were evaluated. In addition, histological analysis of tumor sections was performed to examine changes by detecting the microvessel density and apoptosis in tumor tissues. In the clonogenic survival assay, LL/2 cells treated with IC50 Lipo-HNK for 24 h showed a radiation enhancement ratio of 1.9. After 12 days of combination treatment, the tumor volume decreased 78% and produced an anti-tumor activity 1.3-fold greater than a predicted additive effect of honokiol and radiation alone. This combination treatment also caused an 8.7 day delay in tumor growth. The cell cycle distribution and histological analysis demonstrated that liposomal honokiol has an anti-tumor effect via inducing apoptosis and inhibiting angiogenesis. Liposomal honokiol can enhance tumor cell radiosensitivity in vitro and in vivo, indicating that radiotherapy combined with liposomal honokiol can lead to greater anti-tumor efficacy.  相似文献   

17.
18.
Three‐dimensional (3D) tumor models have been intensively evaluated for their use in cancer research, and there is a strong rationale behind using 3D cell cultures in photodynamic therapy (PDT)‐related experimentation. In this contribution, it is explained why 3D cell cultures containing extracellular matrix (ECM) are preferred for this purpose. Results of experimental studies utilizing ECM‐containing 3D cellular models in PDT research are summarized. Finally, the design of in vitro 3D models that would provide clinically relevant information is discussed.  相似文献   

19.
Living tissues or organ modules consist of different types of highly organized cells and extracellular matrices (ECMs) in a hierarchical manner, such as the multilayered structure of blood vessels and the radial structures of hepatic lobules. Due to animal examinations being banned in the EU since 2013 and a shortage in the demand for tissue repair or organ transplantation, the creation of artificial 3D tissues possessing specific structures and functions similar to natural tissues are key challenges in tissue engineering. To date, we have developed a simple but unique bottom‐up approach, a hierarchical cell manipulation technique, with a nanometer‐sized ECM matrix consisting of fibronectin (FN) and gelatin (G) on cell surfaces. About 10 nm thick FN/G ECM films on cell surfaces were coated successfully by using layer‐by‐layer coating methodology. Various 3D constructs with higher cell density with different types of cells were successfully constructed. In addition to the construction of tissues with higher cell densities, other tissues, such as cartilage or skin tissues, with different cell densities are also important tissue models for tissue engineering and pharmaceutical industries. Thus, we recently developed other methodologies, the collagen coating method and multiple coating method, to fabricate micrometer‐sized level ECM layers on cell surfaces. Various micro‐ or millimeter‐sized 3D constructs with lower cell densities were constructed successfully. By using these two methods, cell distances in 2D or 3D views can be controlled by different thicknesses of ECM layers on cell surfaces at the single‐cell level. Both FN/G and the collagen coating method resulted in homogenous 3D tissues with a controlled layer numbers, cell type, cell location, and properties; these will be promising to achieve different goals in tissue engineering.

  相似文献   


20.
Glycosaminoglycans (GAGs) play an important role in extracellular matrix (ECM) homeostasis and are crucial for maintaining the specific biomechanical and functional properties of musculoskeletal tissues. Aiming at regenerating these tissues, multipotent mesenchymal stromal cells (MSCs) are frequently used, their targeted differentiation and ECM synthesis being a part of their complex mechanism of action. To achieve a better understanding of these processes and to improve the targeted use of the cells for the development of regenerative therapies, reliable quantification of GAGs synthesized by MSCs represents an important step. The aim of this study was to develop a novel technique to specifically assess the de novo synthesis of GAGs, particularly chondroitin sulfate (CS), by MSCs.

Adipose tissue-derived equine MSCs were cultured in vitro for 2, 7, 14, and partially 28 d. Harvested cell populations were enzymatically digested with chondroitinase ABC from Proteus vulgaris and afterwards subjected to CS analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

The herein chosen detection method of MALDI-TOF MS combined with enzymatic digestion represents a reliable technique to monitor the culture time-dependent GAG biosynthesis of MSCs cultured in vitro. Furthermore, the addition of 13C-labeled glucose as cell culture medium supplement is a useful approach to obtain information regarding cellular GAG and in particular CS synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号