首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human colorectal cancer antigen GA733-2 fused to the immunoglobin Fc fragment (GA733-2-Fc) was expressed in stably transformed Drosophila melanogaster S2 cells, and the immunogenicity of recombinant GA733-2-Fc was investigated in mice. Recombinant GA733-2-Fc was secreted into a culture medium with a molecular mass of approximately 65 kDa. Recombinant GA733-2-Fc was purified to homogeneity using affinity fractionation with Protein A sepharose 4 Fast Flow. Recombinant GA733-2-Fc proteins elicited production of specific antibodies against recombinant GA733-2 by immunization through an intraperitoneal route. Recombinant GA733-2-Fc-induced antibodies showed a binding activity to human colorectal carcinoma HCT-116 cells. Secretory recombinant GA733-2-Fc from Drosophila S2 cell systems can be used as an effective experimental antigen for research in cancer vaccine development.  相似文献   

2.
The Tn antigen (GalNAc-α-1-O-Thr/Ser) is a well-known tumor-associated carbohydrate determinant. The use of glycopeptides that incorporate this structure has become a significant and promising niche of research owing to their potential use as anticancer vaccines. Herein, the conformational preferences of a glycopeptide with an unnatural Tn antigen, characterized by a threonine decorated with an sp2-iminosugar-type α-GalNAc mimic, have been studied both in solution, by combining NMR spectroscopy and molecular dynamics simulations, and in the solid state bound to an anti-mucin-1 (MUC1) antibody, by X-ray crystallography. The Tn surrogate can mimic the main conformer sampled by the natural antigen in solution and exhibits high affinity towards anti-MUC1 antibodies. Encouraged by these data, a cancer vaccine candidate based on this unnatural glycopeptide and conjugated to the carrier protein Keyhole Limpet Hemocyanin (KLH) has been prepared and tested in mice. Significantly, the experiments in vivo have proved that this vaccine elicits higher levels of specific anti-MUC1 IgG antibodies than the analog that bears the natural Tn antigen and that the elicited antibodies recognize human breast cancer cells with high selectivity. Altogether, we compile evidence to confirm that the presentation of the antigen, both in solution and in the bound state, plays a critical role in the efficacy of the designed cancer vaccines. Moreover, the outcomes derived from this vaccine prove that there is room for exploring further adjustments at the carbohydrate level that could contribute to designing more efficient cancer vaccines.

An anti-cancer vaccine based on an unnatural antigen with an sp2-iminosugar fragment.  相似文献   

3.
The tumor‐associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti‐MUC1 immunodominant responses. Herein, we prepared synthetic anti‐MUC1 vaccines in which the hydrophilic MUC1 antigen was N‐terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam‐MUC1 or Pam2‐MUC1). These amphiphilic lipid‐tailed MUC1 antigens were self‐assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid‐conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti‐MUC1 IgG antibody titers induced by the Pam2‐MUC1 vaccine were more than 30‐ and 190‐fold higher than those induced by the Pam‐MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3CSK4 as an adjuvant also induced conjugated lipid‐dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3CSK4 adjuvant. Therefore, the non‐covalent assembly of the amphiphilic lipo‐MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti‐MUC1 cancer vaccines.  相似文献   

4.
Therapeutic cancer vaccines based on the abnormal glycans expressed on cancer cells, such as the globo H antigen, have witnessed great progress in recent years. For example, the keyhole limpet hemocyanin (KLH) conjugate of globo H has been on clinical trials as a cancer vaccine. However, such vaccines have intrinsic problems, such as inconsistence in eliciting T cell-mediated immunity in cancer patients and difficult quality control. To address the issue, a structurally defined fully synthetic glycoconjugate vaccine composed of globo H and monophosphoryl lipid A (MPLA) was developed. The new vaccine was shown to elicit robust IgG1 antibody responses and T cell-dependent immunity, which is desired for anticancer vaccines, and induce significantly faster and stronger immune responses than the globo H–KLH conjugate. Moreover, it was self-adjuvanting, namely, inducing immune responses without the use of an external adjuvant, thus MPLA was not only a vaccine carrier but also a build-in adjuvant. It was also found that antibodies induced by the new vaccine could selectively bind to and mediate strong complement-dependent cytotoxicity to globo H-expressing MCF-7 cancer cell. All of the results have demonstrated that the globo H–MPLA conjugate is a better cancer vaccine than the globo H–KLH conjugate under experimental conditions and is worth further investigation and development.  相似文献   

5.
In the development of vaccines for epithelial tumors, the key targets are MUC1 proteins, which have a variable number of tandem repeats (VNTR) bearing tumor-associated carbohydrate antigens (TACAs), such as Tn and STn. A major obstacle in vaccine development is the low immunogenicity of the short MUC1 peptide. To overcome this obstacle, we designed, synthesized, and evaluated several totally synthetic self-adjuvanting vaccine candidates with self-assembly domains. These vaccine candidates aggregated into fibrils and displayed multivalent B-cell epitopes under mild conditions. Glycosylation of Tn antigen on the Thr residue of PDTRP sequence in MUC1 VNTR led to effective immune response. These vaccines elicited a high level antibody response without any adjuvant and induced antibodies that recognized human breast tumor cells. These vaccines appeared to act through a T-cell independent pathway and were associated with the activation of cytotoxic T cells. These fully synthetic, molecularly defined vaccine candidates had several features that hold promise for anticancer therapy.  相似文献   

6.
Tumor associated carbohydrate antigens (TACAs), such as the Tn antigen, have emerged as key targets for the development of synthetic anticancer vaccines. However, the induction of potent and functional immune responses has been challenging and, in most cases, unsuccessful. Herein, we report the design, synthesis and immunological evaluation in mice of Tn-based vaccine candidates with multivalent presentation of the Tn antigen (up to 16 copies), both in its native serine-linked display (Tn-Ser) and as an oxime-linked Tn analogue (Tn-oxime). The high valent vaccine prototypes were synthesized through a late-stage convergent assembly (Tn-Ser construct) and a versatile divergent strategy (Tn-oxime analogue), using chemoselective click-type chemistry. The hexadecavalent Tn-oxime construct induced robust, Tn-specific humoral and CD4+/CD8+ cellular responses, with antibodies able to bind the Tn antigen on the MCF7 cancer cell surface. The superior synthetic accessibility and immunological properties of this fully-synthetic vaccine prototype makes it a compelling candidate for further advancement towards safe and effective synthetic anticancer vaccines.

A fully-synthetic anticancer vaccine candidate incorporating an hexadecavalent Tn antigen analogue display via oxime linkages induced tumor-specific IgG antibodies and cellular immune responses in mice coadministered with QS-21 as an adjuvant.  相似文献   

7.
The circumsporozoite protein (CSP) of Plasmodium falciparum is a leading candidate antigen for inclusion in a malaria subunit vaccine. We describe here the design of a conformationally constrained synthetic peptide, designated UK-39, which has structural and antigenic similarity to the NPNA-repeat region of native CSP. NMR studies on the antigen support the presence of helical turn-like structures within consecutive NPNA motifs in aqueous solution. Intramuscular delivery of UK-39 to mice and rabbits on the surface of reconstituted influenza virosomes elicited high titers of sporozoite crossreactive antibodies. Influenza virus proteins were crucially important for the immunostimulatory activity of the virosome-based antigen delivery system, as a liposomal formulation of UK-39 was not immunogenic. IgG antibodies elicited by UK-39 inhibited invasion of hepatocytes by P. falciparum sporozoites, but not by antigenically distinct P. yoelii sporozoites. Our approach to optimized virosome-formulated synthetic peptide vaccines should be generally applicable for other infectious and noninfectious diseases.  相似文献   

8.
Tumor‐associated carbohydrate antigens (TACAs) are key components of cancer vaccines. A variety of vaccines based on native TACAs such as α‐Tn have shown immunogenicity and protection in preclinical animal studies, however, their weak immunogenicity, low in vivo instability, and poor bioavailability, have discouraged their further evaluations in clinical studies. A new improved vaccine prototype is reported. It is composed of four clustered Tn‐antigen mimetics and a immunogenic peptide epitope that are conjugated to a cyclopeptide carrier. The immunization of mice with this vaccine 1) was safe, 2) induced a strong and long‐lasting Tn‐specific response with IgM/IgG antibodies able to recognize native carbohydrate antigens; 3) produced high titers of IgG1, IgG2a, and IgG3 antibodies; and 4) produced a significant antibody‐dependent regression of tumors and conferred protection. Altogether, these findings pave the way for the clinical development of safe and effective therapeutic vaccines against Tn‐expressing cancers.  相似文献   

9.
《Analytical letters》2012,45(11):1781-1790
Abstract

A new class of fully reversible biosensors, utilizing a layer of monoclonal antibodies trapped at the sensing surface of an immobilized-antigen membrane, is shown to be suited for continuous monitoring of antigen levels. The model sensor described gives a potentiometric response to the hapten 2,4-dinitrophenol (DNP) at micromolar concentration levels through competitive interaction with monoclonal anti-DNP antibodies held within the sensor tip. The proposed design yields a reusable, reagentless antigen sensor with good analytical precision and an operating lifetime of at least 17 days.  相似文献   

10.
《中国化学快报》2021,32(10):3011-3014
A facile and efficient strategy was established for the construction of RC-529 and its derivatives. Four conjugates of RC-529 derivatives with Tn antigen were synthesized and all elicited strong and T cell-dependent immune responses in mice without requiring external adjuvants. In addition, all antisera induced by these conjugates could specifically recognize, bind to and kill Tn-overexpressing cancer cells. Thus, RC-529 shows promise as a useful platform for the development of new vaccine carriers with self-adjuvanting properties for the treatment of cancer. Moreover, preliminary structure-activity relationship analysis provides convincing support for further optimization of, and additional investigation into, RC-529.  相似文献   

11.
Sialyl‐Tn (STn) is a tumor‐associated carbohydrate antigen (TACA) rarely observed on healthy tissues. We synthesized two fully synthetic N‐acetyl and N‐propionyl STn trimer (triSTn) vaccines possessing a T‐helper epitope and a TLR2 agonist, since the clustered STn antigens are highly expressed on many cancer cells. Immunization of both vaccines in mice induced the anti‐triSTn IgG antibodies, which recognized triSTn‐expressing cell lines PANC‐1 and HepG2. The N‐propionyl triSTn vaccine induced the triSTn‐specific IgGs, while IgGs induced by the N‐acetyl triSTn vaccine were less specific. These results illustrated that N‐propionyl triSTn is a valuable unnatural TACA for anticancer vaccines.  相似文献   

12.
A new strategy based on a macrophage-inducible C-type lectin (Mincle) agonist was established to construct synthetic cancer vaccines. Using sialyl-Tn (STn) as a model antigen, four conjugates with the Mincle agonist as a built-in adjuvant were designed and synthesized through a facile and efficient method. All conjugates could induce BMDMs to produce inflammatory cytokines in a Mincle-dependent manner and were found to elicit robust humoral and T cell-dependent immune responses alone in mice. The corresponding antibodies could recognize, bind and exhibit complement-dependent cytotoxicity to STn-positive cancer cells, leading to tumor cell lysis. Moreover, all conjugates could effectively inhibit tumor growth and prolong the mice survival time in vivo, with therapeutic effects better than STn-CRM197/Al. Notably, compared to conventional glycoprotein conjugate vaccines, these fully synthetic conjugate vaccines do not cause “epitope suppression.” Mincle ligands thus hold great potential as a platform for the development of new vaccine carriers with self-adjuvanting properties for cancer treatment. Preliminary structure–activity relationship analysis shows that a vaccine containing one STn antigen carried by vizantin exhibits the best efficacy, providing support for further optimization and additional investigation into Mincle agonists as the carrier of self-adjuvanting cancer vaccines.

A new strategy based on a Macrophage-inducible C-type lectin (Mincle) agonist was established to construct synthetic cancer vaccines.  相似文献   

13.
Sialyl Lewisa (sLea), also known as cancer antigen 19-9 (CA19-9), is a tumor-associated carbohydrate antigen. The overexpression of sLea on the surface of a variety of cancer cells makes it an attractive target for anticancer immunotherapy. However, sLea-based anticancer vaccines have been under-explored. To develop a new vaccine, efficient stereoselective synthesis of sLea with an amine-bearing linker was achieved, which was subsequently conjugated with a powerful carrier bacteriophage, Qβ. Mouse immunization with the Qβ-sLea conjugate generated strong and long-lasting anti-sLea IgG antibody responses, which were superior to those induced by the corresponding conjugate of sLea with the benchmark carrier keyhole limpet hemocyanin. Antibodies elicited by Qβ-sLea were highly selective toward the sLea structure, could bind strongly with sLea-expressing cancer cells and human pancreatic cancer tissues, and kill tumor cells through complement-mediated cytotoxicity. Furthermore, vaccination with Qβ-sLea significantly reduced tumor development in a metastatic cancer model in mice, demonstrating tumor protection for the first time by a sLea-based vaccine, thus highlighting the significant potential of sLea as a promising cancer antigen.  相似文献   

14.
Vaccine adjuvants have been widely used to enhance the immunogenicity of the antigens and elicit long-lasting immune response. However, only few vaccine adjuvants have been approved by the FDA for human use so far. Therefore, there is still an urgent need to develop novel adjuvants for the potential applications in clinical trials. Herein, non-nucleotide small molecule STING agonist di ABZI was employed to construct glycopeptide antigen based vaccines for the first time. Immunological evaluation indicated di ABZI not only enhanced the production of antibodies and T cell immune responses, but also inhibited tumor growth in tumor-bearing mice in glycopeptide-based subunit vaccines. These results indicated that di-ABZI demonstrates a high potential as adjuvant for the development of cancer vaccines.  相似文献   

15.
For antitumor vaccines both the selected tumor‐associated antigen, as well as the mode of its presentation, affect the immune response. According to the principle of multiple antigen presentation, a tumor‐associated MUC1 glycopeptide combined with the immunostimulating T‐cell epitope P2 from tetanus toxoid was coupled to a multi‐functionalized hyperbranched polyglycerol by “click chemistry”. This globular polymeric carrier has a flexible dendrimer‐like structure, which allows optimal antigen presentation to the immune system. The resulting fully synthetic vaccine induced strong immune responses in mice and IgG antibodies recognizing human breast‐cancer cells.  相似文献   

16.
Monophosphoryl lipid A is a safe and potent immunostimulant and vaccine adjuvant, which is potentially useful for the development of effective carbohydrate‐based conjugate vaccines. This paper presents a convergent and efficient synthesis of a monophosphoryl derivative of E. coli lipid A that has an alkyne functionality at the reducing end, which is suitable for coupling with various molecules. The coupling of this derivative to an N‐modified analogue of tumor‐associated antigen GM3 through click chemistry is also presented.  相似文献   

17.
With the emergence of multidrug resistant Salmonella strains, the development of anti-Salmonella vaccines is an important task. Currently there are no approved vaccines against Salmonella Paratyphi A, the leading cause of paratyphoid fever. To fill this gap, oligosaccharides corresponding to the O-polysaccharide repeating units from the surface of Salmonella Paratyphi A have been synthesized through convergent stereoselective glycosylations. The synthetic glycan antigen was conjugated with a powerful immunogenic carrier system, the bacteriophage Qβ. The resulting construct was able to elicit strong and long-lasting anti-glycan IgG antibody responses, which were highly selective toward Salmonella Paratyphi A associated glycans. The availability of well-defined glycan antigen enabled the determination that one repeating unit of the polysaccharide is sufficient to induce protective antibodies, and the paratose residue and/or the O-acetyl modifications on the backbone are important for recognition by antibodies elicited by a Qβ-tetrasaccharide conjugate. Immune sera provided excellent protection to mice from lethal challenge with Salmonella Paratyphi A, highlighting the potential of the synthetic glycan-based vaccine.  相似文献   

18.
Self‐adjuvanting tricomponent vaccines were prepared and assessed for their self‐assembly and immunological activity in mouse models. The vaccines each consisted of a peptide or glycopeptide antigen that corresponds to a complete copy of the variable‐number tandem repeat (VNTR) of the tumor‐associated mucin 1 (MUC1) glycoprotein, the universal T‐cell helper peptide epitope PADRE, and the immunoadjuvant Pam3CysSer. The vaccines were shown to spontaneously self‐assemble in water to form isotropic particles varying in size from 17 to 25 nm and elicited robust humoral responses in murine models without the addition of an external adjuvant. The serum antibodies could recognize tumor‐associated MUC1 epitopes on the surface of MCF7 breast‐cancer cells and B16 melanoma cells, which overexpress this tumor‐associated glycoprotein.  相似文献   

19.
The human colorectal carcinoma-associated GA733 antigen epithelial cell adhesion molecule (EpCAM) was initially described as a cell surface protein selectively expressed in some myeloid cancers. Gangliosides are sialic acid-containing glycosphingolipids involved in inflammation and oncogenesis. We have demonstrated that treatment with anti-EpCAM mAb and RAW264.7 cells significant inhibited the cell growth in SW620 cancer cells, but neither anti-EpCAM mAb nor RAW264.7 cells alone induced cytotoxicity. The relationship between ganglioside expression and the anti- cancer effects of anti-EpCAM mAb and RAW264.7 was investigated by high-performance thin-layer chromatography. The results demonstrated that expression of GM1 and GD1a significantly increased in the ability of anti-EpCAM to inhibit cell growth in SW620 cells. Anti-EpCAM mAb treatment increased the expression of anti-apoptotic proteins such as Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-α, caspase-3, cleaved caspase-3, and cleaved caspase-8 were unaltered. We observed that anti-EpCAM mAb significantly inhibited the growth of colon tumors, as determined by a decrease in tumor volume and weight. The expression of anti-apoptotic protein was inhibited by treatment with anti-EpCAM mAb, whereas the expression of pro-apoptotic proteins was increased. These results suggest that GD1a and GM1 were closely related to anticancer effects of anti-EpCAM mAb. In light of these results, further clinical investigation should be conducted on anti-EpCAM mAb to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.  相似文献   

20.
In this study, immunization with a vaccine consisting of multiple F(abt’)2 fragments of affinity-purified antitetanus toxoid antibodies covalently bound to a carrier protein successfully induced antitetanus toxoid antibodies. Further studies showed that this vaccine preparation contained no biologically detectable tetanus antigen. The induced antitetanus antibody (Ab1t’) titer was higher than the titer of antibodies binding control antigens. The immunizing F(abt’)2 preparation did not elicit a secondary antitetanus response from mice primed with tetanus toxoid and, hence, appeared free of tetanus epitopes. The specificity of Ab1t’ was established by absorption and inhibition with antigen. Immunization with antitetanus F(abt’)2 (Ab1t’) fragments appears to have elicited naturally occurring autologous antitetanus toxoid antibody (Ab1t’) through an idiotypic pathway. As predicted by network theory, anti-idiotype (Ab2) and antitetanus (Ab1t’) cycled reciprocally. Clonotypic characterization of Ab1t’ using isoelectric focusing and affinity immunoblotting showed increases in Ab1t’ titer to be the result of increased synthesis by limited subsets of antitetanus toxoid B-cell clones and not increased synthesis by multiple clones, as is characteristic of antigen-driven Ab1 responses. Many Ab1 and Ab1t’ clonotypes had identical pIs, suggesting that they either share V region genes or are the product of the same B-cell clones. These findings indicate that immunization with polyclonal multivalent Ab1 preparations can trigger active synthesis of antibodies with the same specificity. The results provide further evidence for naturally occurring idiotypic cascades that could be exploited for studies of catalytic antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号