首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of methylammonium lead halides, CH3NH3PbI3 and CH3NH3PbI3-xClx, were deposited onto symmetrical microstructured electrode arrays of gold or platinum on Si/SiO2 wafers. Polarization studies were carried out on perovskite films under vacuum in the dark. For poling, a constant voltage was applied to the samples while the temperature was cycled between 295 K and 4 K. The measured current densities depending on the temperature showed distinct characteristics relating strongly to the crystal phase and the dielectric properties of the perovskite films. Voltage sweeps were carried out at different scan rates at specific temperature intervals after poling. The polarization of the films due to the migration of iodide vacancies in direction of the blocking perovskite/metal interface was frozen almost up to room temperature. Charge carriers were only able to cross the blocking barrier and contribute to the current where the ions have accumulated during poling. All J-V curves showed hysteresis: inverted and regular hysteresis at room temperature and below, respectively. Inverted hysteresis originates from the slow accumulation of ions at the blocking barrier, while regular hysteresis arises from a distortion in the adjacent crystals which will be discussed.  相似文献   

2.
Methylamine‐induced thin‐film transformation at room‐temperature is discovered, where a porous, rough, polycrystalline NH4PbI3 non‐perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3NH3PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4PbI3‐to‐CH3NH3PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.  相似文献   

3.
Theoretical studies have shown that surface terminations, such as MAI or PbI layers, greatly affect the environmental stability of organic–inorganic perovskite. However, until now, there has been little effort to experimentally detect the existence of MAI or PbI terminations on MAPbI3 grains, let alone disclose their effects on the humidity degradation pathway of perovskite solar cell. Here, we successfully modified and detected the surface terminations of MAI and PbI species on polycrystalline MAPbI3 films. MAI-terminated perovskite film followed the moisture degradation process from MAPbI3 to hydrate MAPbI3⋅H2O and then into PbI2, with penetration of water molecules being the main driving force leading to the degradation of MAPbI3 layer by layer. In contrast, for the PbI-terminated perovskite film in a humid atmosphere, a deprotonation degradation pathway was confirmed, in which the film preferentially degraded directly from MAPbI3 into PbI2, here the iodine defects played a key role in promoting the dissociation of water molecules into OH and further catalyzing the decomposition of perovskite.  相似文献   

4.
Excellent conversion efficiencies of over 20 % and facile cell production have placed hybrid perovskites at the forefront of novel solar cell materials, with CH3NH3PbI3 being an archetypal compound. The question why CH3NH3PbI3 has such extraordinary characteristics, particularly a very efficient power conversion from absorbed light to electrical power, is hotly debated, with ferroelectricity being a promising candidate. This does, however, require the crystal structure to be non‐centrosymmetric and we herein present crystallographic evidence as to how the symmetry breaking occurs on a crystallographic and, therefore, long‐range level. Although the molecular cation CH3NH3+ is intrinsically polar, it is heavily disordered and this cannot be the sole reason for the ferroelectricity. We show that it, nonetheless, plays an important role, as it distorts the neighboring iodide positions from their centrosymmetric positions.  相似文献   

5.
Organic perovskite has potential to replace organic dye as light absorber in solar cell since it possesses better optical absorption in visible region than organic dye. This work is concerned with the investigation of the influence of CH3NH3PbI3 perovskite dipping time on the performance of perovskite-sensitized solar cell (PSSC). The effect of the dipping time on the morphology and photoluminescence of the sample has also been investigated. It was found that the device achieved a power conversion efficiency (PCE) as high as 5.57 ± 0.4% at the optimum dipping time of 4 h. The highest PCE is due to the highest IPCE, lowest Rct and the longest carrier lifetime (τ).  相似文献   

6.
An experimental and theoretical investigation is reported to analyze the relation between the structural and absorption properties of CH3NH3PbI3 in the tetragonal phase. More than 3000 geometry optimizations were performed to reveal the structural disorder and identify structures with the lowest energies. The electronic structure calculations provide an averaged band gap of 1.674 eV, which is in excellent agreement with the experimental value of about 1.6 eV. The simulations of the absorption spectrum for three representative structures with lowest energy reproduced the absorption shoulders observed in the experimental spectra. These shoulders are assigned to excitations having similar orbital characters and involving transitions between hybridized 6s(Pb)/5p(I) orbitals and 6p(Pb) orbitals. The geometries of the three structures were analyzed and the effects of the inorganic frame and the CH3NH3+ cations on the absorption properties were estimated. It was found that both changes in the inorganic frame and the CH3NH3+ cations orientations impact the absorption spectra, by modifying the transitions energies and intensities. This highlights the role of CH3NH3+ cation in influencing the absorption properties of CH3NH3PbI3 and demonstrates that CH3NH3+ cation is one of the key elements explaining the broad and nearly constant absorption spectrum in the visible range.  相似文献   

7.
Organometal trihalide perovskites have recently gained extreme attention due to their high solar energy conversion in photovoltaic cells. Here, we investigate the contribution of iodide ions to a total conductivity of the mixed lead halide perovskite CH3NH3PbI3−xClx with a use of the modified DC Hebb–Wagner polarization method. It has been identified that an ionic conductivity dominates in tetragonal phase which is associated with room temperature. The obtained activation energy for this type of hopping mechanism is equal to (0.87 ± 0.02) eV, which is in a good agreement with previous literature reports. The high contribution of ionic conductivity at room temperature might be a reason of the observed hysteresis in halide perovskite solar cells.  相似文献   

8.
Significant progress in solar‐cell research is currently made by the development of metal–organic perovskites (MOPs) owing to their superior properties, such as high absorption coefficients and effective transport of photogenerated charges. As for other semiconductors, it is expected that the properties of MOPs may be significantly improved by a defined nanostructure. However, their chemical sensitivity (e.g., towards hydrolysis) prohibits the application of methods already known for the synthesis of other nanomaterials. A new and general method for the synthesis of various (CH3NH3)PbI3 nanostructures from a novel single‐source precursor is presented. Nanoporous MOP single crystals are obtained by a crystal‐to‐crystal transformation that is accompanied by spinodal demixing of the triethylene glycol containing precursor structure. Selective binding of a capping agent can be used to tune the particle shape of the MOP nanocrystals.  相似文献   

9.
The perovskite CH3NH3PbI3 excited-state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid-gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity.  相似文献   

10.
Here we identify structural inhomogeneity on a micrometer scale across the surface of a CH3NH3PbI3 perovskite single crystal. At the crystal edge a local distortion of the crystal lattice is responsible for a widening of the optical bandgap and faster photo-carrier recombination. These effects are inherently present at the edge of the crystal, and further enhanced upon water intercalation, as a preliminary step in the hydration of the perovskite material.  相似文献   

11.
碳前驱体CH3ArCH2NH2的热解性能及动力学研究   总被引:2,自引:1,他引:2  
通过密闭压力容器法、常压DSC、高压DSC及紫外分光光度定量分析法等实验手段,对液相沉积法制碳/碳复合材料用碳前驱体CH3ArCH2NH2的热裂解行为进行了研究,获得不同温度、不同压力下该碳前驱体的热分解温度和残碳率,用等温动力学和非等温动力学方法获得了热裂解反应的表观活化能,实验结果表明,常压热裂解温度大约为530.15-556.55K,1-3MPa的高压范围内的热裂解温度大约在618.34-675.49K,密闭压力容器中的残碳率为56.23%,常压下的残碳率为28.96%-36.47%,而高压下残碳率可达59.11%,根据基辛格等方法获得了等温条件下和非等温条件下热裂解反应的表观活化能Ea分别为206.78kJ/mol和183.93kJ/mol, 反应级数N~1.  相似文献   

12.
Wu  Jing  Wang  Yuwen  Su  Chaoying  Zhou  Hong  Xu  Huanyan  Jin  Liguo 《Journal of Sol-Gel Science and Technology》2021,100(3):440-450
Journal of Sol-Gel Science and Technology - In this paper, A modified one-step method was used to prepare the CH3NH3PbI3 (MAPbI3) perovskite film, and the planar heterojunction perovskite solar...  相似文献   

13.
Carrier density and transport properties in the CH3NH3PbI3 thin film have been investigated. It is found that the carrier density, the depletion field, and the charge collection and transport properties in the CH3NH3PbI3 absorber film can be controlled effectively by different concentrations of reactants. That is, the carrier properties and the self‐doping characteristics in CH3NH3PbI3 films are strongly influenced by the reaction thermodynamic and kinetic processes. Furthermore, by employing mixed solvents with ethanol and isopropanol to deposit the CH3NH3PbI3 film, the charge collection and transport efficiencies are improved significantly, thereby yielding an overall enhanced cell performance.  相似文献   

14.
利用高压原位红外光谱法实时跟踪监测了CH_3NH_3PbI_3在高压氮气以及不同含量氧气气氛中加热时的变化规律.发现CH_3NH_3PbI_3对氧气十分敏感,当氮气中含有1%(体积分数)的氧气时,CH_3NH_3PbI_3加热到150℃发生分解;继续提高氧气含量到21%,温度升高到100℃时CH_3NH_3PbI_3即发生分解;若在常压高纯氮气中加热,其分解温度则能提高到250℃;若将氮气压力提高到4.0 MPa,CH_3NH_3PbI_3的分解温度进一步提高到270℃.实验结果表明,提高压力和减少环境中的氧含量是改善钙钛矿复合半导体稳定性的有效方法.相应地,复合半导体光电子器件的热处理过程可以在更高的温度下进行,从而有希望获得性能更加优良的钙钛矿复合半导体光电子器件.  相似文献   

15.
The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity.  相似文献   

16.
We investigate the degradation path of MAPbI3 (MA=methylammonium) films over flat TiO2 substrates at room temperature by means of X‐ray diffraction, spectroscopic ellipsometry, X‐ray photoelectron spectroscopy, and high‐resolution transmission electron microscopy. The degradation dynamics is found to be similar in air and under vacuum conditions, which leads to the conclusion that the occurrence of intrinsic thermodynamic mechanisms is not necessarily linked to humidity. The process has an early stage, which drives the starting tetragonal lattice in the direction of a cubic atomic arrangement. This early stage is followed by a phase change towards PbI2. We describe how this degradation product is structurally coupled with the original MAPbI3 lattice through the orientation of its constituent PbI6 octahedra. Our results suggest a slight octahedral rearrangement after volatilization of HI+CH3NH2 or MAI, with a relatively low energy cost. Our experiments also clarify why reducing the interfaces and internal defects in the perovskite lattice enhances the stability of the material.  相似文献   

17.
The polymer electrolytes based on chitosan and ammonium acetate (CH3COONH4) were prepared by solution casting technique and the properties were studied. With the addition of CH3COONH4, the amorphous nature of the polymer electrolytes was promoted. The glass transition temperature, activation energy, and conductivity are closely related. Lower the glass transition temperature, lower the activation energy, higher the conductivity. The 40 wt % ammonium acetate doped polymer electrolyte has the lowest glass transition temperature of 369 K, the lowest activation energy of 0.19 eV, and the highest ionic conductivity of 2.87 × 10?4 S cm?1 at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 549–554, 2009  相似文献   

18.
卢岳  葛杨  隋曼龄 《化学学报》2021,79(3):344-352
本工作实验对比了可见光以及紫外光辐照下甲氨碘化铅(CH3NH3PbI3即MAPbI3)基钙钛矿太阳能电池器件性能及微结构演变特征差异.结果表明可见光辐照下钙钛矿太阳能电池器件中MAPbI3层发生降解的同时,伴随着Au元素从金属电极一侧向MAPbI3和电子传输层SnO2的界面处迁移现象.但相较于紫外光,可见光辐照下器件中...  相似文献   

19.
有机-无机卤化物钙钛矿是一类优异的光电材料. 在过去四年内, 基于有机-无机卤化物钙钛矿的光电器件实现了超过15%的光电转换效率. 而有机-无机卤化物钙钛矿材料的可控制备是保证其在光电器件中应用的基础. 本文采用新的沉积方法在玻璃衬底表面制备了一种典型的有机-无机卤化物钙钛矿CH3NH3PbI3薄膜. 其制备过程是: 采用超声辅助的连续离子吸附与反应法在玻璃衬底表面沉积PbO-PbI2复合物膜, 之后与CH3NH3I蒸汽在110 ℃环境下反应, 将PbO-PbI2复合物膜转化成CH3NH3PbI3钙钛矿薄膜. 对CH3NH3PbI3薄膜的微观结构, 结晶性及其光电性能等进行了表征. 结果表明, CH3NH3PbI3薄膜呈晶态, 具有典型的钙钛矿晶体结构. 薄膜表面形貌均匀, 晶粒尺寸超过400 nm. 在可见光范围, CH3NH3PbI3薄膜透过率低于10%, 能带宽度为1.58eV. 电学性能研究表明CH3NH3PbI3薄膜表面电阻率高达1000 MΩ. 高表面电阻率表明CH3NH3PbI3薄膜具有一定的介电性能, 其介电常数(εr)在100 Hz时达到155. 本研究提出了一种制备高质量CH3NH3PbI3钙钛矿薄膜的新方法, 所得CH3NH3PbI3薄膜可望在光、电及光电器件中得到应用.  相似文献   

20.
(CH3NH3)4YbCl7 has been synthesized from a solution of CH3NH3Cl and YbCl3 in a mixture of ethnole/acetonitrile. The structure was solved from 1464 single crystal data by Patterson methods and refined to a final Rw = 0.035 space group P2, a = 9.972(6) Å, b = 7.605(5) Å, c = 12.866(6) Å, β = 90.53(4)°. The structure consists of alternating [YbCl6]3? octahedra and of tetrahedrally arranged [(CH3NH3)4Cl]3+ units. Raman spectra display a splitting of frequencies related to the CH3NH3+ group in agreement with the structure determination. The magnetic susceptibility shows a remarkable deviation from a Curie-Weiss law below 170 K which may be explained by crystal field effects of Yb3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号