首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel signal-generation tag based on polyaspartic acid (PASA)-doped CaCO3 nanospheres was utilized for development of the electrochemical immunosensing protocol with a calcium ion-selective electrode (Ca-ISE). The organic-inorganic hybrid nanospheres were synthesized via the reverse micellar method, and functionalized with the detection antibody through the carbodiimide coupling. Upon target analyte introduction, a sandwiched immunoreaction was carried out on the microplate between capture antibody and the labeled detection antibody on the CaCO3 nanospheres. The carried CaCO3 was dissolved under acidic conditions, and the released Ca2 + ions were detected on a Ca-ISE. The detectable electronic signal increased with the increasing target concentration. By monitoring the shift in the potential, the concentration of the analyte could be quantitatively evaluated by using a portable ion-selective electrode. Importantly, our strategy can be readily applied in other electrochemical detection systems (e.g., DNA sensors, immunosensors and aptasensors) by controlling the corresponding labels on the CaCO3 nanospheres.  相似文献   

2.
《中国化学快报》2023,34(8):108512
High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection. The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances. In this study, the hollow SnO2 nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes, then the SnO2/Ti3C2Tx nanocomposites were obtained. Compared with that based on either pure SnO2 nanoparticles or hollow nanospheres of SnO2, the SnO2/Ti3C2Tx composite-based sensor exhibits much better sensing performances such as higher response (36.979), faster response time (5 s), and much improved selectivity as well as stability (15 days) to 100 ppm C2H5OH at low working temperature (200 °C). The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration, which provides a large number of active sites for gas adsorption and surface catalytic reaction. In addition, the heterostructure interfaces between SnO2 hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.  相似文献   

3.
In this paper, we have successfully demonstrated the clean synthesis of high-quality Pd@CeO2 core@shell nanospheres with tunable Pd core sizes in water, and furthermore loaded the as-obtained Pd@CeO2 products on commercial γ-Al2O3via electrostatic interaction. KBr here plays two key roles in inducing the growth and self-assembly of Pd@CeO2 core@shell nanospheres. First, Br ions can retard the reduction of Pd2+ ions via the formation of the more stable complex of [PdBr4]2– so as to tune the size of Pd cores. Second, it greatly decreases the colloidal stability, and hence the surface polarity-weakened Pd and CeO2 NPs have to spontaneously self-assemble into more stable and ordered structures. Among different-sized Pd samples, the as-obtained 8 nm-Pd@CeO2/Al2O3 one exhibits the best performance in catalytic CO oxidation, which can catalyze 100% CO conversion into CO2 at 95 °C, which is much lower than the previously reported CeO2-encapsulated Pd samples.  相似文献   

4.
The reactions of perfluoroalkyl- and perfluoroacyl-iminosulfur difluorides with chlorine monofluoride result in the preparation of perfluoroalkyldichloroamines and a new class of compounds N,N-dichloroperfluoroamides, RfC(O)NCl2, via the elimination of SF4. The amides, FC(O)NCl2 and CF3C(O)NCl2, in addition to 1,2-bis-(dichloroamino)tetrafluoroethane, Cl2NCF2CF2NCl2, are reported and characterized. The reactions of CIF with other sulfur(IV) imines proceed in an analogous manner to form perfluoroalkyl-dichloroamines via the elimination of the corresponding sulfur(IV) fluoride.  相似文献   

5.
Intrinsic enzyme-mimic activity of inorganic nanoparticles has been widely used for nanozymatic anticancer and antibacterial treatment. However, the relatively low peroxidase-mimic activity (PMA) and catalse-mimic activity (CMA) of nanozymes in tumor microenvironment has hampered their potential application in the cancer therapy. Therefore, in this study, we aimed to fabricate platinum (Pt) nanozymes dispersed on the surface of iron oxide (Fe3O4) nanosphere that, in addition to boosting the PMA and CMA, resulted in the formation of a pH-sensitive nano-platform for drug delivery in breast cancer therapy. After development of Fe3O4 nanospheres containing Pt nanozymes and loading 5-fluorouracil (abbreviated as: Fe3O4/Pt-FLU@PEG nanospheres), the physicochemical properties of the nanospheres were examined by electron microscopy, dynamic light scattering, zeta potential, X-ray diffraction, thermogravimetric, BET surface, and PMA/CMA analyses. Then, the cytotoxicity of the Fe3O4/Pt-FLU@PEG nanospheres against 4T1 cells was investigated by the cell counting kit-8 assay and flow cytometry. Also, the anticancer effect of fabricated nanoplatform was assessed in mouse bearing 4T1 cancer tumors, in vivo. The results showed that the Fe3O4/Pt-FLU@PEG nanospheres provide a platform for optimal FLU loading, continuous pH-sensitive drug release, and potential PMA and CMA to increase the level of ROS and O2, respectively. Cytotoxicity outputs showed that the Fe3O4/Pt-FLU@PEG nanospheres mitigate the proliferation of 4T1 cancer cells mediated by apoptosis and intracellular generation of reactive oxygen species (ROS). Furthermore, in vivo assays indicated a significant reduction in tumor size and overcoming tumor hypoxia. Overall, we believe that the developed nanospheres with dual enzyme-mimic activity and pH-sensitive drug delivery can be used for ROS/chemotherapy double-modality antitumor therapy.  相似文献   

6.
The 8-hydroxyquinolate of pentavalent vanadium (“vanadium 8-hydroxyquinolate”, (C9H6ON)2. VO.OH) dissolves in a number of chlorohydrocarbons to give deep blue-black solutions. These solutions undergo distinctive colour changes upon addition of acids (blue), alcohols (red via purple), thiols (yellow via green) and amines (yellow via green), provided that these reagents are soluble in the chlorohydrocarbon. These sensitive and specific qualitative tests are extended to the semiquantitative determination of alcohols. For comparable compounds the rate of reaction with vanadium 8-hydroxyquinolate is as follows: [—NH2, NH,  N] > [—CH2OH,—CH2SH] > [CHOH, CHSH] > [COH,  CSH].  相似文献   

7.
We report on an amperometric biosensor for hydrogen peroxide. It is obtained via layer-by-layer assembly of ordered mesoporous carbon nanospheres and poly(diallyldimethylammonium) on the surface of an indium tin oxide (ITO) glass electrode and subsequent adsorption of cytochrome c. UV–vis absorption spectroscopy was applied to characterize the process of forming the assembled layers. Cyclic voltammetry revealed a direct and quasi-reversible electron transfer between cytochrome c and the surface of the modified ITO electrode. The surface-controlled electron transfer has an apparent heterogeneous electron-transfer rate constant (k s ) of 5.9?±?0.2?s?1 in case of the 5-layer electrode. The biosensor displays good electrocatalytic response to the reduction of H2O2, and the amperometric signal increase steadily with the concentration of H2O2 in the range from 5?μM to 1.5?mM. The detection limit is 1?μM at pH 7.4. The apparent Michaelis-Menten constant (K m ) of the sensor is 0.53?mM. We assume that the observation of a direct electron transfer of cytochrome c on mesoporous carbon nanospheres may form the basis for a feasible approach for durable and reliable detection of H2O2.
Figure
An amperometric biosensor for hydrogen peroxide has been fabricated via layer-by-layer assembly of mesoporous carbon nanospheres and polyelectrolyte on ITO electrode surface for the adsorption of cytochrome c. The direct electrochemistry and electrocatalytic activity of cytochrome c was achieved on the multilayer-assembled electrode, indicating a good affinity and biocompatibility of mesoporous carbon nanospheres for cytochrome c.  相似文献   

8.
Gold nanostructures have generated significant attention in biomedical areas because of their major role in cancer photothermal therapeutics. In order to conveniently combine gold nanostructures and drugs into one nanocomposite, Au2Se/Au core–shell nanostructures with strong near-infrared-absorbing properties were synthesized using a simple method and embedded inside bovine serum albumin (BSA) nanospheres by using a spray dryer equipped with an ultrasonic atomizer followed by thermal denaturation. The nanospheres with narrow size distribution mainly ranging from 450 to 600 nm were obtained. The Au2Se/Au-loaded BSA nanospheres (1 mg) adsorbed at least 0.01 mg of water-insoluble zinc phthalocyanine (ZnPc) photosensitizer. After irradiation with a 655-nm laser (20 min), the temperature of the Au2Se/Au-loaded BSA nanospheres [200 μL, 2 mg/mL, BSA/Au2Se/Au 10:1 (w/w)] increased by over 20 °C from the initial temperature of 24.82?±?0.15 °C, and the release of ZnPc was improved compared with a corresponding sample without irradiation. After being incubated with cancer cells (human esophageal carcinoma Eca-109), the nanospheres exhibited photothermal and photodynamic therapy with a synergistic effect upon laser irradiation. This work provides novel Au2Se/Au-loaded polymer nanospheres prepared by a high-efficiency strategy for incorporating drugs for improving the efficiency in killing cancer cells.  相似文献   

9.
A monoclinic tungsten trioxide (WO3) nanosphere film was synthesized via a sol–gel approach using an amphiphilic diblock copolymer polystyrene-b-polyacrylic acid (PS-b-PAA) as template in toluene. The morphology, surface area and crystal structure of as-synthesized WO3 were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET (N2) and powder X-ray diffraction (XRD). The XRD pattern of WO3 nanosphere film can be identified as a pure monoclinic WO3 phase. The WO3 precursor nanospheres had diameters ranging from 20 to 150 nm and surface area of 78.8 m2 g?1. The hydrogen gasochromic experiments revealed that such WO3 nanosphere film with high surface area had a rapid response (5 ~ 10 s) to pure hydrogen at room temperature.  相似文献   

10.
A galvanic replacement strategy has been successfully adopted to design AgxAu1–x@CeO2 core@shell nanospheres derived from Ag@CeO2 ones. After etching using HAuCl4, the Ag core was in situ replaced with AgxAu1–x alloy nanoframes, and void spaces were left under the CeO2 shell. Among the as-prepared AgxAu1–x@CeO2 catalysts, Ag0.64Au0.36@CeO2 shows the optimal catalytic performance, whose catalytic efficiency reaches even 2.5 times higher than our previously reported Pt@CeO2 nanospheres in the catalytic reduction of 4-nitrophenol (4-NP) by ammonia borane (AB). Besides, Ag0.64Au0.36@CeO2 also exhibits a much lower 100% conversion temperature of 120 °C for catalytic CO oxidation compared with the other samples.  相似文献   

11.
The air-, and thermo-stable palladium(II) complexes C1-C10 are prepared by the reaction of PdCl2(CH3CN)2 with pyridylbenzoimidazole. With various substituents on the pyridine ring, palladium atom was coordinated by two pyridylbenzoimidazole molecules via nitrogen atoms of benzoimidazole. The structure of complexes C3, C4, C6, and C7 has been confirmed by X-ray diffraction analysis. Without substituents on the pyridine ring, palladium atom was directly coordinated with two nitrogen atoms of pyridine and benzoimidazole nitrogen via intramolecular chelation (C10). These complexes performed the Heck olefination of aryl bromides in a good to high yield under phosphine-free conditions.  相似文献   

12.
The novel synthesis of nitro-porphyrin aldehydes via vicarious nucleophilic substitution of hydrogen in the corresponding nitro-meso-tetraphenylphyrinates (ZnII, CuII) with haloform carbanions, followed by hydrolysis of the introduced dihalomethyl groups under mild conditions (H2O–toluene, AgClO4, reflux) is described.  相似文献   

13.
Reaction of donor-acceptor cyclopropanes with 1,3-diphenylisobenzofuran in the presence of lanthanide triflates, as well as CuOTf, Sn(OTf)2, SnCl2, ZnCl2, GaCl3, and MgI2, proceeds as a formal [3+4]-cycloaddition leading to a newly formed seven-membered ring. This reaction was found to be typical of cyclopropane-1,1-diesters and dinitriles, as well as 1-nitrocyclo-propanecarboxylates containing aromatic, heteroaromatic, and vinylic substituents at the C(2) atom of the small ring. When Me3SiOTf, TiCl4, SnCl4, or BF3·OEt2 were used as initiators, unusual cyclic hemiacetals were formed via the conjugate 1,4-addition of a cyclopropane and a nucleophile to the diene moiety.  相似文献   

14.
Chirally functionalized hollow nanospheres with different surface properties were successfully synthesized by co‐condensation of (2S,1′R,2′R)‐Ntert‐butyloxycarbonylpyrrolidine‐2‐carboxylic acid [2′‐(4‐trimethoxysilylbenzylamide)cyclohexyl] amide with 1,2‐bis(trimethoxysilyl)ethane or tetramethoxysilane using F127 (EO106PO70EO106) as surfactant in water. The TEM and N2 sorption characterizations show that the particle size of the hollow nanosphere is 15–21 nm with a core diameter of 10–16 nm. These L ‐prolinamide‐functionalized hollow nanospheres are highly efficient solid catalysts for the direct asymmetric aldol reaction between cyclohexanone and aromatic aldehydes. It was found that the addition of water in the reaction system not only enhanced the catalytic activity but also increased the enantioselectivity, which is probably due to the enhanced hydrogen bond between the amide oxygen atom and the hydroxyl group of water. Moreover, the catalytic activity increases sharply as the surface hydrophobicity of the hollow nanospheres increases. These hollow nanospheres are quite stable and can be reused with almost the same enantioselectivity and only a slight decrease in catalytic activity.  相似文献   

15.
Recently reported ionophore‐based ion‐selective nanospheres contained pH‐independent and positively charged solvatochromic dyes. Here, we evaluate systematically the effect of anions to the fluorescence response of the nanospheres. The anion interference was found significant for anion concentrations above 10 mM. The sensor responses in the presence of various anion background was studied. While target ion (K+) causes the fluorescence of the nanospheres to decrease, increasing anion background also leads to lower fluorescence intensity. Lipophilic anions such as ClO4?, SCN?, and I? exhibited much more interference than hydrophilic anions (e. g., NO3?, Cl?, F?, SO42?). The trend of the anion interference followed the Hofmeister series. A theoretical model was also demonstrated based on anion adsorption on the surface of the nanospheres.  相似文献   

16.
1,1-Difluoroethysilanes (R3SiCF2CH3, R = Me or Et) were synthesized from 1,1-difluoroethyl phenyl sulfone and chlorosilanes using magnesium metal via reductive 1,1-difluoroethylation. It was confirmed that 1,1-difluoroethylsilanes were effective 1,1-difluoroethylating reagents for carbonyl compounds.  相似文献   

17.
The cycloadducts of menthofuran with acylbromoacetylenes, (3-bromo-1,6-dimethyl-5,6,7,8-tetrahydro-2H-2,4a-epoxynaphthalen-4-yl)(aryl)methanones, rearrange (CHCl3, reflux, 1 h) to 2-(2-acylethyl)benzofurans (along with the expected 2-bromo-3-hydroxy-4,7-dimethyl-5,6,7,8-tetrahydronaphthalene-1-yl)(aryl)methanones) via 2-acylethynylmenthofurans, thus indicating the exceptionally mild and rapid transfer of four hydrogens from a cyclohexane ring to a triple bond through the furan moiety in the key intermediate 2-acylethynylmenthofuran.  相似文献   

18.
Novel bis(acetylacetonato-O,O′)(biphenyldiolato-O,O′)titanium(IV) is synthesized and characterized by X-ray crystallography and other physical methods. The kinetics of substitution of bidentate 2,2′-biphenyldiolato for the two monodentate Cl ligands in Ti(CH3COCHCOCH3)2Cl2 proceeds via a 7-coordinated transition state according to an associative mechanism. The Ti(CH3COCHCOCH3)2biphen complex exhibits high hydrolytic stability.  相似文献   

19.
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)2, Eu(NO3)3 and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ 5D0-7FJ (J=1-4) transitions, with the magnetic dipole 5D0-7F1 allowed transition (590 nm) being the most prominent emission line.  相似文献   

20.
The molecular structures of the isatin Schiff bases of S-methyldithiocarbazate (Hisasme) and S-benzyldithiocarbazate (Hisasbz) have been determined by X-ray diffraction and their complexes of general formula [ML2n(solvate) [M = Co2+, Ni2+, Zn2+; L = anionic forms of Hisasme or Hisasbz; solvate = DMF, DMSO; n = 1, 2] and [Sn(L)Ph2Cl]·nMeOH (n = 0, 1) have been synthesized and characterized by a variety of physicochemical techniques and X-ray diffraction. The bis-ligand complexes, [Ni(isasbz)2]·2DMSO and [Co(isasme)2]·DMF have a six-coordinate, distorted octahedral geometry with the two uninegatively charged tridentate ONS ligands coordinated to the metal ions meridionally via the amide O-atoms, the azomethine nitrogen atoms and the thiolate sulfur atoms. By contrast, the crystal structure of [Zn(isasbz)2]·2DMF shows a four-coordinate distorted tetrahedral geometry with the two Schiff bases coordinated as NS bidentate ligands via the azomethine nitrogen atoms and the thiolate sulfur atoms. Steric constraints of the rigid tridentate ligands lead to unusual ‘pseudo-coordination’ of the O-donors which occupy sites close to the metal but too distant to be considered as true coordinate bonds.The crystal structures of the tin(IV) complexes [SnLPh2Cl]·nMeOH (L = isasme and isasbz; n = 0, 1) also show that the Schiff bases act as monoanionic bidentate NS chelating agents coordinating the tin(IV) ion via the azomethine nitrogen atoms and the thiolate sulfur atoms, the tin atom in each complex is five-coordinate with a highly distorted geometry intermediate of square pyramidal and trigonal bipyramidal. Again Sn?O contacts are weak and do not qualify as coordinate bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号