首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

2.
Uniform and dense Au nanoparticles grown on Ge (Au/Ge) were fabricated by a facile galvanic displacement method and employed as surface‐enhanced Raman scattering (SERS) substrates. The substrates exhibited excellent reproducibility in the detection of rhodamine 6G aqueous solution with a relative standard deviation of <20%. The substrate showed a high Raman enhancement factor of 3.44 × 106. This superior SERS sensitivity was numerical confirmed by the three‐dimensional finite‐difference time‐domain method, which demonstrated a stronger electric field intensity (|E/E0|2) distribution around the Au nanoparticles grown on Ge. This facile and low‐cost prepared Au/Ge substrate with high SERS sensitivity and reproducibility might have potential applications in monitoring in situ reaction in aqueous solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A dye‐sensitized solar cell (DSSC) containing a TiO2 film treated with COOH‐functionalized germanium nanoparticles (Ge COOH Nps) exhibited a higher short‐circuit photocurrent density (Jsc; 15.4 mA cm−2) compared to the corresponding untreated DSSC (13.4 mA cm−2) using N719 and a 12 μm thick TiO2 film at 100 mW cm−2. The amount of N719 attached to the treated TiO2 film was 21 % greater than that attached to the untreated TiO2 film. Enhancement of the Jsc value by 15 % was attributed mostly to an intramolecular charge transfer from N719 attached to the Ge COOH Nps to the TiO2 conduction band through the Ge COOH Nps.  相似文献   

4.
The problem of graphene protection of Ge surfaces against oxidation is investigated. Raman, X-Ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements of graphene epitaxially grown on Ge(001)/Si(001) substrates are presented. It is shown that the penetration of water vapor through graphene defects on Gr/Ge(001)/Si(001) samples leads to the oxidation of germanium, forming GeO2. The presence of trigonal GeO2 under graphene was identified by Raman and XRD measurements. The oxidation of Ge leads to the formation of blisters under the graphene layer. It is suggested that oxidation of Ge is connected with the dissociation of water molecules and penetration of OH molecules or O to the Ge surface. It has also been found that the formation of blisters of GeO2 leads to a dramatic increase in the intensity of the graphene Raman spectrum. The increase in the Raman signal intensity is most likely due to the screening of graphene by GeO2 from the Ge(001) surface.  相似文献   

5.
Germanium(II) dipropionate (1) has been synthesized and its crystal structure, as well as that of germanium(IV) tetrapropionate (2), has been determined. By contrast to monomeric 2 with monodentate propionate ligands, compound 1 is associated, forming a cyclotetramer [Ge(O2CEt)2]4 (1a) via intermolecular dative C?O → Ge interactions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we present two studies of nanocrystals prepared by the pulsed laser vaporization–controlled condensation (LVCC) technique. In the first study, we present a comparison between the surface oxidation, morphology and the photoluminescence (PL) properties of Si and Ge nanocrystals. In the second study, we compare the photochromic properties of Mo and W oxides nanoparticles with the properties of the corresponding bulk materials. We also present evidence for a novel photoreduction of the white WO3 nanoparticles into the blue W2O5 following the irradiation of the particles with the second harmonic of the Nd:YAG laser in air. These studies illustrate the novel properties of the nanoscale particles, which could lead to significant practical and technological applications.  相似文献   

7.
In this work, we introduce Ni nanopyramid arrays (NPAs) supported amorphous Ge anode architecture and demonstrate its effective improvement in sodium storage properties. The Ni−Ge NPAs are prepared by facile electrodeposition and sputtering method, which eliminates the need for any binder or conductive additive when used as a Na-ion battery anode. The electrodes display stable cycling performance and enhanced rate capabilities in contrast with planar Ge electrodes, which can be owing to the rational design of the architectured electrodes and firm bonding between current collector and active material (i. e. Ni and Ge, respectively). To validate improvement of nanostructures on electrochemical performance, sodium insertion behavior of crystalline Ge derived from Mg2Ge precursor has been investigated, in which limited but effective enhancement of sodium storage properties are realized by introducing porous nanostructure in crystalline Ge. These results show that elaborately designed configuration of Ge electrodes may be a promising anode for Na-ion battery applications.  相似文献   

8.
A series of novel arylgermanium hydrides ArnGeH4–n (n = 1–3) and diaryl(chloro)germanium hydrides Ar2Ge(Cl)H were synthesized and characterized. Systematic preparation and purification were achieved via the lithium chloride–triflic acid and the optimized Grignard route. Arylgermanium hydrides ArnGeH4–n (Ar = 2,5-Me2C6H3, n = 1–3) were characterized by 1H and 73Ge NMR spectroscopy and single crystal X-ray diffractometry.  相似文献   

9.
A continuous flow hydride generation laser-induced fluorescence (HG-LIF) spectrometry technique has been investigated for performing trace determination of germanium (Ge). Hydride generation of Ge is performed using reagent concentrations of 2?M H3PO4 and 0.5% NaBH4 and fluorescence detection is performed using tunable dye laser radiation at 253.323?nm for Ge excitation with fluorescence measured at 303.907?nm. The HG-LIF approach provides a linear response for Ge in the concentration range from 1.0 to 50?ng mL?1 and a limit of detection of 0.1?ng mL?1. Replicate measurements at 10?ng mL?1 have a relative standard deviation of 0.1% (n?=?8). Measurements of Ge in different sample matrices have demonstrated the effectiveness of thiourea and ascorbic acid as masking agents that compensate for samples containing interfering ions. The determinations of the Ge content in reference water samples, fly ash samples, and supplement capsules demonstrate that the HG-LIF approach has feasibility for measuring Ge in different sample matrices at environmentally relevant concentrations.  相似文献   

10.
High purity NaGe was directly prepared by a low-temperature reaction of NaH and Ge. The product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. This material is a useful starting reagent for the preparation of Ge nanoparticles. Hydrogen-terminated germanium (Ge) nanoparticles were prepared by reaction of NaGe with NH4Br. These Ge nanoparticles could be prepared as amorphous or crystalline nanoparticles in quantitative yields and with a narrow size distribution. The nanoparticles were functionalized via thermally initiated hydrogermylation with 1-eicosyne, CH3(CH2)17C≡CH to produce alkyl-terminated Ge nanoparticles. The modified Ge nanoparticles were characterized by powder XRD, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and Raman spectroscopy, and photoluminescence (PL) spectroscopy. The alkyl-functionalized Ge nanoparticles can be expected to have promising applications in many technological and biological areas.  相似文献   

11.
We present results of an XAS and EXAFS study of the synthesis of Ge nanoparticles formed by a metathesis reaction between Mg2Ge and GeCl4 in diglyme (diethylene glycol dimethyl ether). The progress of the formation reaction and the products formed at various stages in the processing was characterised by TEM and optical spectroscopy as well as in situ XAS/EXAFS studies using specially designed reaction cells.  相似文献   

12.
We report the preparation of α-chlorosilyl- and acyl-substituted digermenes. Unlike the corresponding transient disilenes, these species with a Ge=Ge double bond show an unexpectedly low tendency for cyclization, but in turn are prone to thermal Ge=Ge bond cleavage. Triphenylsilyldigermene has been isolated as a crystalline model compound, and is the first fully characterized example of a neutral digermene with an A2GeGeAB substitution pattern. Spectroscopic and computational evidence prove the constitution of 1-adamantoyldigermene as a first persistent species with a heavy double bond conjugated with a carbonyl moiety.  相似文献   

13.
The Ge/Si(100)2 × 1 interface was investigated by means of Auger electron spectroscopy, low‐energy electron diffraction, thermal desorption spectroscopy, and work function measurements, in the regime of a few monolayers. The results show that growth of Ge at room temperature forms a thermally stable amorphous interface without significant intermixing and interdiffusion into the substrate, for annealing up to ~1100 K. Therefore, the Ge‐Si interaction most likely takes place at the outmost silicon atomic plane. The charge transfer between Ge and Si seems to be negligible, indicating a rather covalent bonding. Regarding the Ge overlayer morphology, the growth mode depends on the substrate temperature during deposition, in accordance with the literature. Stronger annealing of the germanium covered substrate (>1100 K) causes desorption of not only Ge adatoms, but also SiGe and Ge2 species. This is probably due to a thermal Ge‐Si interdiffusion. In that case, deeper silicon planes participate in the Ge‐Si interaction. Above 1200 K, a new Ge superstructure (4 × 4)R45o was observed. Based on that symmetry, an atomic model is proposed, where Ge adatom pairs interact with free silicon dangling bonds.  相似文献   

14.
Synthetic routes for the preparation of Si or Ge nanoclusters as gaseous species, colloids, supported composites, or as unsupported powders are reviewed along with selected characterization data. The optical properties of these and related materials, such as porous Si, are summarized with particular emphasis on photo- or electroluminescence phenomena. Research opportunities related to Si and Ge cluster chemistry are suggested.  相似文献   

15.
The reaction of benzyl isocyanide, tert‐butyl isocyanide, and 2,6‐dimethylphenyl isocyanide with tetramesityldigermene (Mes2Ge=GeMes2) was examined. Whereas the addition of benzyl isocyanide gave the C?NC activation product, Mes2Ge(CH2Ph)Ge(CN)Mes2, tert‐butyl isocyanide, and 2,6‐dimethylphenyl isocyanide did not give stable adducts, rather the rate of conversion of the digermene to the corresponding cyclotrigermane was accelerated. A comparison between the reactivity of the isocyanides with Mes2Ge=GeMes2 and the Ge(100)‐2×1 surface was made and some insights into the surface chemistry are offered.  相似文献   

16.
Field- and quantum-effect nanoelectronic devices built on one-dimensional (1-D) chemically synthesized nanostructures are likely among those immediate “successors” of the contemporary top–down silicon CMOS technology for future computing, preserving the spirit of Moore’s Law in the post-CMOS era. The nanotechnology-embedded chip technology would emerge in the foreseeable future. However, there exists a large gap between scientific research and semiconductor electronics. Many of the critical issues need to be addressed before nanotechnology becomes truly impacting. Application-driven nanotechnology research becomes more and more important. In this article, with 1-D germanium nanowire as an example, we discuss research efforts at NASA Ames Center for Nanotechnology in directing nanomaterial synthesis and device integration towards implementation in the next-generation miniaturized and intelligent chip systems. The technology goals include (i) low-temperature, low-defect, high-yield Ge nanowire synthesis, (ii) self-assembly of Ge nanowires-on-insulator (GeNOI), (iii) non-contaminating metal catalysts, and (iv) Ge quantum-wire synthesis. The potential applications of 1-D Ge nanowires are very low power, high performance logic FETs that deeply extend CMOS scaling into nanometer regime and extremely low power, fast speed, room-temperature-operating quantum-wire computing.  相似文献   

17.
The diaminosilylene tBuNCH2CH2NtBuSi: reacted with the diaminogermylenes RNCH2CH2NRGe: R = 2,6-Me2C6H3, iPr, by silylene insertion into one of the Ge–N bonds to furnish the aminosilylgermylenes 8 , R = 2,6-Me2C6H3, and 9 , R = iPr. The X-ray structure analyses of these compounds revealed that 8 remains monomeric in the crystal with weak Ge … Ge interactions to the germanium atom of a neighbouring germylene molecule, whereas 9 dimerizes to give the strongly twisted (E)-1,2-diamino-1,2-disilyldigermene (E)- 10 with a long Ge–Ge double bond of 246 pm and a large trans-bent angle of 47.3°.  相似文献   

18.
As anode materials for high-performance Li-ion batteries, peapod-like Ge-based composites, including Ge, a Li-inactive conducting Cu3Ge, and a porous carbon matrix are synthesized simply by annealing CuGeO3@dopamine in a H2/Ar atmosphere. The introduction of the carbon layer and inactive alloying phase Cu3Ge not only enhances the electrical conductivity of the Ge anode, but also reduces the volume change of Ge during the cell cycle as a buffer. In particular, the anode of this peapod-like Cu3Ge/Ge@C shows an excellent long cycle life as well as outstanding capacity performance, with a discharge specific capacity up to 934 mA h g−1 after 500 cycles.  相似文献   

19.
The organosilicon reagent 1,4‐bis‐(trimethylsilyl)‐1,4‐diaza‐2,5‐cyclohexadiene 2 plays the binary role of the simultaneous reduction of GeCl2.dioxane 1 dissolved in oleylamine to Ge nanocrystals and the formation of graphitic sheets under hot‐injection conditions. This colloidal synthetic route to germanium nanocrystals embedded on N‐doped graphitic nanosheets Ge/NG is free of any template or catalyst and involves easy purification techniques. The Ge/NG/C obtained after carbonization has been explored for anode performance in lithium‐ion batteries. Both Ge/NG and Ge/NG/C can be obtained on a gram scale and are bottleable under argon for months.  相似文献   

20.
Vinyl‐substituted germanes react stereo‐ and regioselectively with olefins in the presence of complexes containing Ru? H and Ru? Ge bonds with the formation of functionalized vinylgermanes that cannot be synthesized by olefin crossmetathesis procedures. The reaction opens a new catalytic route for preparation of a class of organogermanes that are potent organometallic reagents for organic synthesis because they show very low toxicity and could replace organotin compounds. The mechanism of this new catalytic route was proven to involve an interesting insertion of the vinylgermane into the Ru? H bond and β‐Ge transfer to the metal with elimination of ethylene and generation of an Ru? Ge bond, followed by insertion of the alkene into the Ru? Ge bond and β‐H transfer to the metal to eliminate the substituted vinylgermane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号