首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
氢能作为零碳排放能源是被公认的最清洁能源之一,如何有效可持续地产氢是未来人类步入氢能经济首先要解决的问题。电解水技术基于电化学分解水的原理,利用可再生电能或太阳能驱动水分解为氢气和氧气,被认为是最有前途和可持续性的产氢途径。然而,无论是光解水还是电解水,均需要高活性、高稳定性的非贵金属氢析出和氧析出催化剂以使水电解反应经济节能。本文介绍了我们研究所近三年在水电解方面的研究进展,其中着重介绍了:(ⅰ)氢析出催化剂,包括利用低温磷化过渡金属(氢)氧化物的方法制备过渡金属磷化物,同时过渡金属硫化物、硒化物以及碳化物等均被成功合成并被应用为有效的阴极析氢催化剂;(ⅱ)氧析出催化剂,主要包括金属磷化物、硫化物、氧化物/氢氧化物等;(ⅲ)双功能催化剂,主要包括过渡金属磷化物、硒化物、硫化物等。最后,总结展望了发展水电解非贵金属催化剂所面临的挑战与未来发展方向。  相似文献   

2.
Electrochemical water splitting is a clean and sustainable process for hydrogen production on a large scale as the electrical power required can be obtained from various renewable energy resources. The key challenge in electrochemical water splitting process is to develop low-cost electrocatalysts with high catalytic activity for the hydrogen evolution reaction (HER) on the cathode and the oxygen evolution reaction (OER) on the anode. OER is the most important half-reaction involved in water splitting, which has been extensively studied since the last century and a large amount of electrocatalysts including noble and non-noble metal-based materials have been developed. Among them, transition metal borides and borates (TMBs)-based compounds with various structures have attracted increasing attention owing to their excellent OER performance. In recent years, many efforts have been devoted to exploring the OER mechanism of TMBs and to improving the OER activity and stability of TMBs. In this review, recent research progress made in TMBs as efficient electrocatalysts for OER is summarized. The chemical properties, synthetic methodologies, catalytic performance evaluation, and improvement strategy of TMBs as OER electrocatalysts are discussed. The electrochemistry fundamentals of OER are first introduced in brief, followed by a summary of the preparation and performance of TMBs-based OER electrocatalysts. Finally, current challenges and future directions for TMBs-based OER electrocatalysts are discussed.  相似文献   

3.
The depletion of fossil fuels has accelerated the search for clean, sustainable, scalable, and environmentally friendly alternative energy sources. Hydrogen is a potential energy carrier because of its advantageous properties, and the electrolysis of water is considered as an efficient method for its industrial production. However, the high-energy conversion efficiency of electrochemical water splitting requires cost-effective and highly active electrocatalysts. Therefore, researchers have aimed to develop high-performance electrode materials based on non-precious and abundant transition metals for conversion devices. Moreover, to further reduce the cost and complexity in real-world applications, bifunctional catalysts that can be simultaneously active on both the anodic (i.e., oxygen evolution reaction, OER) and cathodic (i.e., hydrogen evolution reaction, HER) sides are economically and technically desirable. This Minireview focuses on the recent progress in transition-metal-based materials as bifunctional electrocatalysts, including several promising strategies to promote electrocatalytic activities for overall water splitting in alkaline media, such as chemical doping, defect (vacancy) engineering, phase engineering, facet engineering, and structure engineering. Finally, the potential for further developments in rational electrode materials design is also discussed.  相似文献   

4.
过渡金属基材料成本相对较低,催化性能较为优异,是在全水分解领域最有希望替代贵金属基电催化剂的候选材料之一,但有限的活性位点、相对较差的电导率等因素限制了其广泛应用。非金属元素掺杂能够调节主体材料电子结构,优化吸附能,从而对过渡金属基电催化剂的活性与稳定性产生积极影响,缩减其与贵金属材料性能差距。本文总结了近年来非金属元素改性在过渡金属基电催化材料中的相关研究,系统综述了非金属元素掺杂的方法和不同非金属元素的掺杂效果,从物理化学性质的改变和电子结构的变化多角度分析了非金属元素改性对过渡金属基材料的影响,最后对非金属元素掺杂过渡金属基电催化剂的未来发展方向作出了展望。  相似文献   

5.
海水作为地球上最丰富的自然资源之一,在实现大规模的电解水制氢方面具有得天独厚的优势。然而,海水中的Cl-、Ca2+和Mg2+等使催化剂在阴极发生腐蚀、毒化或降解,导致其稳定性、活性以及使用寿命显著降低。近年来,为了解决上述问题,人们致力于设计开发廉价的高效稳定析氢反应(HER)催化剂,进而提高电解海水制氢效率。本文首先介绍了电解海水的优势及其HER所面临的挑战,其次从活性和稳定性等方面重点论述了硒化物、硫化物、氮化物以及磷化物等过渡金属基催化剂在电解海水HER中的研究进展,最后总结和展望了电解海水HER催化剂未来的发展前景。  相似文献   

6.
Water electrolysis that results in green hydrogen is the key process towards a circular economy. The supply of sustainable electricity and availability of oxygen evolution reaction (OER) electrocatalysts are the main bottlenecks of the process for large-scale production of green hydrogen. A broad range of OER electrocatalysts have been explored to decrease the overpotential and boost the kinetics of this sluggish half-reaction. Co-, Ni-, and Fe-based catalysts have been considered to be potential candidates to replace noble metals due to their tunable 3d electron configuration and spin state, versatility in terms of crystal and electronic structures, as well as abundance in nature. This Review provides some basic principles of water electrolysis, key aspects of OER, and significant criteria for the development of the catalysts. It provides also some insights on recent advances of Co-, Ni-, and Fe-based oxides and a brief perspective on green hydrogen production and the challenges of water electrolysis.  相似文献   

7.
石墨烯基催化剂的设计合成与电催化应用   总被引:2,自引:1,他引:1  
为了解决能源匮乏和环境污染的问题,研究人员正致力于寻找清洁可持续的新能源。 其中,氧气还原、氧气析出、析氢反应等是紧密联系新型清洁能源获取和存贮的重要电化学反应。 为了提高其能量转化效率,电催化剂(如碳载铂Pt/C)被广泛地用于降低其反应活化能、提高能量转化效率。 近年来,石墨烯作为一种具有高比表面积和优异导电性的二维碳材料受到了广泛关注。 通过表面杂原子掺杂、缺陷调控和引入催化活性组分等方式,获得了催化性能与贵金属催化剂相媲美,且低价格和高稳定性的非贵金属石墨烯基催化材料。 针对氧气还原、氧气析出和析氢反应在燃料电池、金属-空气电池和电催化水分解中的应用,本文概括综述了通过表/界面结构性质调控提高石墨烯电催化性能和稳定性,获得具有双功能或复合催化性能的石墨烯基催化剂的最新研究进展。 最后总结和展望了亟待解决的问题及未来的发展趋势。  相似文献   

8.
Electrochemical water splitting (EWS) is a sustainable and promising technology for producing hydrogen as an ideal energy carrier to address environmental and energy issues. Developing highly‐efficient electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is critical for increasing the efficiency of water electrolysis. Recently, nanomaterials derived from Prussian blue (PB) and its analogs (PBA) have received increasing attention in EWS applications owing to their unique composition and structure properties. In this Minireview, the latest progress of PB/PBA‐derived materials for EWS is presented. Firstly, the catalyst design principles and the advantages of preparing electrocatalysts with PB/PBA as precursors are briefly introduced. Then, strategies for enhancing the electrocatalytic performance (HER, OER or overall water splitting) were discussed in detail, and the recent development and applications of PB/PBA‐derived catalysts for EWS were summarized. Finally, major challenges and possible future trends related to PB/PBA‐derived functional materials are proposed.  相似文献   

9.
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have attracted increasing attention for the sake of clean, renewable, and efficient energy technologies in recent years. The design of ORR/OER bifunctional electrocatalysts is a challenging task in the promotion of highly efficient rechargeable metal-air batteries as well as regenerative fuel cells. Owing to the wide adaptability of different types and ratios of metals in the interlayer space as well as the adjustable interlayer distance, composite materials with layered double hydroxides (LDHs) and their derivatives have recently been registered as electrode materials and catalysts supports for various electrochemical reactions. This study examines the recent development of bifunctional electrocatalysts based on LDHs for ORR/OER to expand the application of LDHs in the field of energy storage and conversion. Various bifunctional electrocatalysts associated with LDHs are discussed in detail to improve their performance. Finally, existing problems and future prospects for improving the performance of LDHs bifunctional electrocatalysts are proposed.  相似文献   

10.
周澳  郭伟健  王月青  张进涛 《电化学》2022,28(9):2214007
电解水是有效的产氢方式之一, 开发具有高催化活性的电极材料是当前电解水的研究热点,但仍面临诸多挑战。 本研究报告了一种通过焦耳热技术快速制备多金属异质结构, 并将其用作电解水的双功能电催化剂, 展现出优异的电解水催化活性。通过焦耳热处理三种金属前驱涂覆的碳布, Mo2C和CoO/Fe3O4异质结构形成。当其用作析氢(HER)和析氧(OER)的双功能催化剂时, 仅需121 mV和268 mV的过电位,可以实现10 mA·cm-2的电流密度。当用于两电极电解水时, MoC/FeO/CoO/CC作为阳极和阴极催化剂表现出优异的电催化性能和长期稳定性, 仅需1.69 V即可实现10 mA·cm-2的电流密度, 并且展现出25小时的稳定性。本研究通过简单、 快速的焦耳热技术实现了双金属/多金属异质结构的构筑,并应用于高效水电解,为合理设计多金属异质结构提供指导。  相似文献   

11.
Electrochemical water splitting has been considered an important method for facilitating renewable and sustainable energy conversion. For the practical application of water electrocatalysis, it is important to develop a non-noble metal-based, earth-abundant, highly efficient, and stable electrocatalysts for water splitting. Among the various non-noble metal-based electrocatalysts, layered transition metal chalcogenides (TMCs) have emerged as fascinating materials for electrochemical water splitting. The unique structural and electronic properties of layered TMCs make them very attractive for understanding the fundamental principles of electrocatalysis, as well as for developing highly efficient and stable electrocatalysts for the practical application of water electrocatalysis. In this mini review, we present a comprehensive overview of recent developments to improve the intrinsic electrocatalytic activity of layered transition metal chalcogenide (TMC)-based electrocatalysts for practical applications in water splitting.  相似文献   

12.
为简化电解水催化剂的合成过程和优化电解水操作系统, 双功能电解水催化剂的研究, 特别是在碱性条件下同时具有优异催化氢析出和氧析出反应性能的双功能电催化剂的研究尤为重要. 其中, 过渡金属硫化物, 特别是 CoNi 硫化物, 被报道有与氢化酶类似的催化活性中心, 从而具有优异的催化氢析出和催化氧析出反应性能. 虽然有关对过渡金属硫化物的研究很多, 但主要集中在具有一维纳米线和二维纳米片形貌结构的过渡金属硫化物. 不幸的是, 这些形貌结构的过渡金属硫化物在电催化过程中容易聚集和受限于电荷传输能力. 三维纳米结构的材料具有较大的比表面积以分布更多的活性位点和拥有良好的电子传输能力, 所以, 开发三维纳米结构的过渡金属硫化物材料可能是改进其催化电解水性能的一个好途径. 本文采用简单的两步水热法, 通过硫化合成的 CoNi 前体得到了长于泡沫镍上的三维百合花状的 CoNi2S4(Co-Ni2S4/Ni). 它只需要 54 mV 的过电位即可获得 10 mA cm-2的催化氢析出反应电流, 是最好的碱性催化氢析出反应电极材料之一. 它在驱动 100 mA cm-2的催化氧析出反应电流时也只需要 328 mV 的过电位. 另外, 把 CoNi2S4/Ni 分别作为阴极和阳极组装成双电极碱性水电解槽时, 它只需要 1.56 V 的电压即可获取 10 mA cm-2的催化全电解水电流并具有良好的催化全电解水稳定性.扫描电子显微镜、透射电子显微镜和 N2吸脱附曲线测试结果表明, 该三维百合花状的 CoNi2S4/Ni 的表面粗糙度高和拥有多孔特性. 多孔结构的 CoNi2S4/Ni 可提供更多可接触的催化活性位点, 也有利于催化过程中的电解质和生成的气体的扩散与传递. 交流阻抗图谱测试结果表明, CoNi2S4/Ni 具有良好的电子传输能力. 另外, 不同于前期对尖晶石结构的硫化物 AB2S4的研究结果, XPS 结果表明, CoNi2S4/Ni 中含有 Niб+和 Sб-活性物种, 表明 CoNi2S4具有与活性氢化酶类似的活 性中心. Niδ+和 Sδ-可分别作为氢氧根和质子的接收体, 协助促进吸附的水分子的分离, 从而提高材料的催化性能. 所以, Niδ+和 Sδ-活性物种的出现, 大比表面积的三维百合花状多孔结构和良好的电荷传输能力等特性集合于 CoNi2S4/Ni 上使得CoNi2S4/Ni 具有优异的催化氢析出和催化氧析出反应性能.  相似文献   

13.
综述了用于燃料电池中氧还原反应(ORR)的石墨烯衍生物负载的各种纳米催化剂的最新进展。介绍了用于表征石墨烯基电催化剂的常规电化学技术以及石墨烯基电催化剂最新的研究进展。负载于还原氧化石墨烯(RGO)上的Pt催化剂的电化学活性和稳定性均得到显著提高。其它贵金属催化剂,如Pd, Au和Ag也表现出较高的催化活性。当以RGO或少层石墨烯为载体时, Pd催化剂的稳定性提高。讨论了氧化石墨烯负载Au或Ag催化剂的合成方法。另外,以N4螯合络合物形式存在的非贵过渡金属可降低氧的电化学性能。 Fe和Co是可替代的廉价ORR催化剂。在大多数情况下,这些催化剂稳定性和耐受性的问题均可得到解决,但其整体性能还很难超越Pt/C催化剂。  相似文献   

14.
A recent development for selective ammonia oxidation into nitrogen and water vapor (NH3-SCO) over noble metal-based catalysts is covered in the mini-review. As ammonia (NH3) can harm human health and the environment, it led to stringent regulations by environmental agencies around the world. With the enforcement of the Euro VI emission standards, in which a limitation for NH3 emissions is proposed, NH3 emissions are becoming more and more of a concern. Noble metal-based catalysts (i.e., in the metallic form, noble metals supported on metal oxides or ion-exchanged zeolites, etc.) were rapidly found to possess high catalytic activity for NH3 oxidation at low temperatures. Thus, a comprehensive discussion of property-activity correlations of the noble-based catalysts, including Pt-, Pd-, Ag- and Au-, Ru-based catalysts is given. Furthermore, due to the relatively narrow operating temperature window of full NH3 conversion, high selectivity to N2O and NOx as well as high costs of noble metal-based catalysts, recent developments are aimed at combining the advantages of noble metals and transition metals. Thus, also a brief overview is provided about the design of the bifunctional catalysts (i.e., as dual-layer catalysts, mixed form (mechanical mixture), hybrid catalysts having dual-layer and mixed catalysts, core-shell structure, etc.). Finally, the general conclusions together with a discussion of promising research directions are provided.  相似文献   

15.
The development of inexpensive and efficient bifunctional electrocatalysts is significant for widespread practical applications of overall water splitting technology. Herein, a one-pot solvothermal method is used to prepare hollow porous MnFe2O4 spheres, which are grown on natural-abundant elm-money-derived biochar material to construct MnFe2O4/BC composite. When the overpotential is 156 mV for both the oxygen evolution reaction and the hydrogen evolution reaction, the current density reaches up to 10 mA cm−2, and its duration is 10 h. At 1.51 V, the overall water decomposition current density of 10 mA cm−2 can be obtained in 1 m KOH. This work proves that elm-money-derived biochar is a valid substrate for growing hollow porous spheres. MnFe2O4/BC give a promising general strategy for preparing the effective and stable bifunctional catalysis that can be expand to multiple transition metal oxide.  相似文献   

16.
利用可再生能源产生的电能电解水制取氢气,被认为是下一代清洁能源的最佳选择之一。然而,通过电解水可持续的产生氢气需要高活性的催化剂来使得反应有效地进行。基于类石墨烯二维材料的析氢反应电催化剂展现出巨大的潜力,因而备受关注。本文主要结合我们课题组近期在析氢反应电催化剂方面的研究,介绍了类石墨烯二维材料的析氢反应电催化剂的研究进展,主要包括过渡金属二硫族化合物、前过渡金属碳化物(MXenes)以及硼单层纳米片等。最后总结和展望了析氢反应电催化剂所面临的挑战与未来发展方向。  相似文献   

17.
In spite of recent advances in the synthesis of hollow micro/nanostructures, the fabrication of three‐dimensional electrodes on the basis of these structures remains a major challenge. Herein, we develop an electrochemical sacrificial‐template strategy to fabricate hollow Co3O4 microtube arrays with hierarchical porosity. The resultant unique structures and integrated electrode configurations impart enhanced mass transfer and electron mobility, ensuring high activity and stability in catalyzing oxygen and hydrogen evolution reactions. Impressively, the apparent performance can rival that of state‐of‐the‐art noble‐metal and transition‐metal electrocatalysts. Furthermore, this bifunctional electrode can be used for highly efficient overall water splitting, even competing with the integrated performance of Pt/C and IrO2/C.  相似文献   

18.
The development of active,low-cost and durable bifunctional electrocatalysts toward both oxygen evolution reaction(OER) and hydro gen evolution react ion(HER) a re important for overall water splitting.Here,well-defined arrays of vanadium-iron bimetal organic frameworks(VFe-MOF) with controllable stoichiometry have been successfully prepared on nickel foam(NF).The as-fabricated VFe-MOF@NF electrode exhibits excellent electrocatalytic activity and durability for OER and HER in alkaline medium.The material's overpotentials of 10 mA/cm~2 are 246 mV for OER and 147 mV for HER,respectively.The electrolyzer made from the VFe-MOF@NF electrodes as both the cathode and anode in 1 mol/L KOH needs only a voltage of 1.61 V to reach a current density of 10 mA/cm~2.The superior performance of VFeMOF@NF can be attributed to the morphological control and electronic regulation of the bimetals,that is,1) the exposure of the active sites at electrocatalyst/electrolyte interfaces due to the array structure;2)the synergistic effect of vanadium and iron metals on electro-catalyzing the overall water splitting.  相似文献   

19.
With the strengths of zero carbon emission and high gravimetric energy density, hydrogen energy is recognized as a primary choice for future energy supply. Electrochemical water splitting provides a promising strategy for effective and sustainable hydrogen production through renewable electricity, and one of the immediate challenges toward its large-scale application is the availability of low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER). Given the enormous efforts in the exploration of potential transition-metal carbide (TMC) electrocatalysts, this review aims to summarize the recent advances in synthetic methods and optimization strategies of TMC electrocatalysts. Additionally, the perspectives for the development of novel efficient TMC-based catalysts are also proposed.  相似文献   

20.
Electrocatalytic water splitting is a promising alternative to produce high purity hydrogen gas as the green substitute for renewable energy. Thus, development of electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are vital to improve the efficiency of the water splitting process particularly based on transition metals which has been explored extensively to replace the highly active electrocatalytic activity of the iridium and ruthenium metals-based electrocatalysts. In situ growth of the material on a conductive substrate has also been proven to have the capability to lower down the overpotential value significantly. On top of that, the presence of substrate has given a massive impact on the morphology of the electrocatalyst. Among the conductive substrates that have been widely explored in the field of electrochemistry are the copper based substrates mainly copper foam, copper foil and copper mesh. Copper-based substrates possess unique properties such as low in cost, high tensile strength, excellent conductor of heat and electricity, ultraporous with well-integrated hierarchical structure and non-corrosive in nature. In this review, the recent advancements of HER and OER electrocatalysts grown on copper-based substrates has been critically discussed, focusing on their morphology, design, and preparation methods of the nanoarrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号