首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel metalloid germanium cluster [Ge9(Hyp)2HypGe] ( 1 ) was synthesized, exhibiting two different bulky groups [Hyp = Si(SiMe3)3; HypGe = Ge(SiMe3)3]. Further reaction of 1 with ZnCl2 gives the derivative [ZnGe18(Hyp)4(HypGe)2] ( 2 ) in good yield, showing that the substitution of Si(SiMe3)3 by Ge(SiMe3)3 within a metalloid Ge9R3 compound leads to a comparable reactivity. 1 and 2 are characterized by NMR spectroscopy, mass spectrometry ( 1 ) and single crystal structure analyses ( 2 ). 1 and 2 are the first metalloid germanium clusters bearing germyl groups.  相似文献   

2.
《Mendeleev Communications》2021,31(6):797-799
The aromaticity in 2,3-pyrido-annulated 1,3,2λ2-diazatetroles C5H3N(NR)2EII (EII = C, Si, Ge, Sn, Pb) was studied using a set of experimental and calculated criteria: UV-VIS, Raman, ISE, NICS, GIMIC and EDDB. The data obtained indicate either a slight decrease in aromaticity (NICS, GIMIC, ISE methods) or equal aromaticity (UV-VIS, ISE methods) compared to benzo-annulated analogues C6H4(NR)2E. The π-aromaticity increases down the group from Si to Pb.  相似文献   

3.
Mixed Ligand Complexes of Nickel(0) and Cobalt(I) with the Anionic Ligands E(C6H5)3? (E ? Ge, Sn, Pb) Complexes of the general formula MINi(PPh3)3(EPh3)(THF)x (E ? Ge[Ia], Sn[Ib], Pb[Ic]) and MI3Ni(PPh3)(EPh3)3(THF)x (E ? Ge[IIa], Sn[IIb]) are formed from (Ph3P)2Ni(C2H4) by substitution with MIEPh3. The analogous complexes of the ligand SiPh3? could not be prepared, because of the formation of SiPh4 from LiSiPh3 and coordinated PPh3. Attempts to synthesize a nickel(II) complex of the ligand SnPh3? had no success, only possible decomposition products of these compounds, like (nBu2PPh)2NiII(Ph)Cl and NaxNi°(PPh3)4?x(SnP4)x(THF)Y, were isolated. NaCoI(PPh3)2(SnPh3)2(THF)7 (IV) was prepared by the reaction of Co(PPh3)3Cl and NaSnPh3. 1H-NMR and 119Sn Mössbauer spectra show a higher donor action of SnPh3? in IIb than in Ib. This causes a stronger π-back donation Ni → P in the case of IIb. IV is a paramagnetic compound, the vis-spectrum is discussed using simple crystal field theory.  相似文献   

4.
We report on the synthesis of new derivatives of silylated clusters of the type [Ge9(SiR3)3]? (R = SiMe3, Me = CH3; R = Ph, Ph = C6H5) as well as on their reactivity towards copper and zinc compounds. The silylated cluster compounds were synthesized by heterogeneous reactions starting from the Zintl phase K4Ge9. Reaction of K[Ge9{Si(SiMe3)3}3] with ZnCl2 leads to the already known dimeric compound [Zn(Ge9{Si(SiMe3)3}3)2] ( 1 ), whereas upon the reaction with [ZnCp*2] the coordination of [ZnCp*]+ to the cluster takes place (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) under the formation of [ZnCp*(Ge9{Si(SiMe3)3}3)] ( 2 ). A similar reaction leads to [CuPiPr3(Ge9{Si(SiMe3)3}3)] ( 3 ) from [CuPiPr3Cl] (iPr=isopropyl). Further we investigated the novel silylated cluster units [Ge9(SiPh3)3]? ( 4 ) and [Ge9(SiPh3)2]? ( 5 ), which could be identified by mass spectroscopy. Bis‐ and tris‐silylated species can be synthesized by the respective stoichiometric reactions, and the products were characterized by ESI‐MS and NMR experiments. These clusters show rather different reactivity. The reaction of the tris‐silylated anion 4 with [CuPiPr3Cl] leads to [(CuPiPr3)3Ge9(SiPh3)2]+ as shown from NMR experiments and to [(CuPiPr3)4{Ge9(SiPh3)2}2] ( 6 ), which was characterized by single‐crystal X‐ray diffraction. Compound 6 shows a new type of coordination of the Cu atoms to the silylated Zintl clusters.  相似文献   

5.
Energy differences, ΔXS‐t (X = E, H and G) (ΔXS‐t = X(singlet)‐X(triplet)) between singlet (s) and triplet (t) states are calculated at B3LYP/6‐311++G (3df,2p). The DFT calculations show that the triplet state of C4H4C is a ground state with planar conformer respect to its corresponding nonplanar singlet state. Both singlet and triplet states of C4H4M (M = Si, Ge, Sn and Pb) have a planar conformer with the singlet ground state. Four isodesmic reactions are presented for determining the stability energies, SE. NICS calculations are carried out for C4H4M to determine the aromatic character.  相似文献   

6.
The oxidation of [Ge9(Hyp)3]? (Hyp=Si(SiMe3)3) with an FeII salt leads to Ge18(Hyp)6 ( 1 ), the largest Group 14 metalloid cluster that has been structurally characterized to date. The arrangement of the 18 germanium atoms in 1 shows similarities to that found in the solid‐state structure Ge(cF136). Furthermore, 1 can be described as a macropolyhedral cluster of two Ge9 units. Quantum‐chemical calculations further hint at a strained arrangement so that 1 can be considered as a first trapped intermediate on the way from Ge9 units to elemental germanium with the clathrate‐II structure (Ge(cF136)).  相似文献   

7.
Reactivity studies of the GeII→B complex L(Cl)Ge⋅BH3 ( 1 ; L=2-Et2NCH2-4,6-tBu2-C6H2) were performed to determine the effect on the GeII→B donation. N-coordinated compounds L(OtBu)Ge⋅BH3 ( 2 ) and [LGe⋅BH3]2 ( 3 ) were prepared. The possible tuning of the GeII→B interaction was proved experimentally, yielding compounds 1-PPh2-8-(LGe)-C10H6 ( 4 ) and L(Cl)Ge⋅GaCl3 ( 5 ) without a GeII→B interaction. In 5 , an unprecedented GeII→Ga coordination was revealed. The experimental results were complemented by a theoretical study focusing on the bonding in 1 − 5 . The different strength of the GeII→E (E=B, Ga) donation was evaluated by using energy decomposition analysis. The basicity of different L(X)Ge groups through proton affinity is also assessed.  相似文献   

8.
[Mn(en)3]2[Ge4O6Te4]·1.5en ( 1 ) and (enH)3[Mn(en)3]3[Ge4O6Te4]2I·4.7en ( 2 ) may be prepared at 150 °C by solvothermal reaction of elemental Ge and Te with Mn(OOCCH3)2 ·4H2O in the presence of [CH3)4N]I as a mineralizer in respectively superheated ethylenediamine (en) or an en/CH3OH (3:2) mixture. Both contain the novel [Ge4O6Te4]4— anion with a central adamantanoid Ge4O6 core and four terminal Te atoms and represent the first examples of such a mixed [M4E6E4′]4— anion (M = Si‐Sn; E = O‐Te). As a result of their increased polarity, the Ge‐Te bonds of 2 are markedly shorter (2.438 — 2.462Å) than those previously reported for telluridogermanates(IV).  相似文献   

9.
New Ternary Germanides: The Compounds Ln 4Zn5Ge6 ( Ln : Gd, Tm, Lu) Three new ternary germanides were prepared by heating mixtures of the elements. Gd4Zn5Ge6 (a = 4.249(3), b = 18.663(17), c = 15.423(6) Å), Tm4Zn5Ge6 (a = 4.190(1), b = 18.410(5), c = 15.105(5) Å), and Lu4Zn5Ge6 (a = 4.179(1), b = 18.368(4), c = 15.050(3) Å) are isotypic and crystallize in a new structure type (Cmc21; Z = 4), composed of edge‐ and corner‐sharing ZnGe4 tetrahedra. The rare‐earth atoms fill channels of the Zn,Ge network running along the a axis and predominantly have an octahedral coordination of Ge atoms or a pentagonal prismatic environment of Zn and Ge atoms. The ZnGe4 tetrahedra are orientated to each other so that two of six Ge atoms form pairs, while the other ones have no homonuclear contacts. This is in accord with an ionic splitting of the formula: (Ln3+)4(Zn2+)5(Ge3–)2(Ge4–)4. LMTO band structure calculations support the interpretation of bondings derived from interatomic distances. The metallic conductivity of these compounds expected from the electronic band structure was confirmed by measurements of the electrical resistance of Tm4Zn5Ge6.  相似文献   

10.
The addition of Sn and Zn ions to [Ge9] clusters by reaction of [Ge9]4? with SnPh2Cl2, ZnCp*2 (Cp*=pentamethylcyclopentadienyl), or Zn2[HC(Ph2P=NPh)2]2 is reported. The resulting Sn‐ and Zn‐bridged clusters [(Ge9)M(Ge9)]q? (M=Sn, q=4; M=Zn, q=6) display various coordination modes. The M atoms that coordinate to the open square of a C4v‐symmetric [Ge9] cluster form strong covalent multicenter M?Ge bonds, in contrast to the M atoms coordinating to triangular cluster faces. Molecular orbital analyses show that the M atoms of the Ge9M fragments coordinate to a second [Ge9] cluster with similar orbitals but in different ways. The [Ge9Sn]2?unit donates two electrons to the triangular face of a second [Ge9]2? cluster with D3h symmetry, whereas [Ge9Zn]2?acts as an electron acceptor when interacting with the triangular face of a D3h‐symmetric [Ge9]4? unit.  相似文献   

11.
The Zintl anion (Ge2As2)2? represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2‐diaminoethane (en) solution of (Ge2As2)2?, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3? is obtained as its salt [K(crypt‐222)]3[Au6(Ge3As)(Ge2As2)3]?en?2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non‐bonding) octahedron of six Au atoms that is face‐capped by four (GexAs4?x)x? (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3? unit besides three (Ge2As2)2? units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3?. Reactions of the heavier homologues (Tt2Pn2)2? (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine‐vertex clusters, {[AuTt5Pn3]2}4? (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo‐tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2?, according to the DFT calculations.  相似文献   

12.
Nickel(O) Complexes with the Anionic Ligands E (C6H5)?3 (E = Si, Ge, Sn) Complexes of the type MeIXNi(EPH3)X(THF)Y are formed from Ni(COD)2 by substitution with MeIEPh3 (E = Si, Ge, Sn) in THF (COD = Cyclooctadiene-1,5). In the case of the ligands GePh?3 and SnPh?3 nickel(O) is fourfold coordinated, but in the case of SiPh?3 it is only two-fold or threefold coordinated. Products of the reaction between Ni(COD)2 and LiPbPh3 are Li2Ni(COD)Ph2(THF)5 and Ph3PbPbPh3. The 1H-n.m.r., 29Si-n.m.r., and 119Sn-Mössbauer spectra of the complexes MeIXNi(EPh3)X(THF)Y are compared with the spectra of the corresponding alkali compounds MeIEPh3. The magnetic anisotropy effects of the atomes Ge, Sn, Pb and Ni are of high importance for 1H- and 29Si-chemical shifts. The donor action of SnPh?3 is shown by the Mössbauer spectrum of Na4Ni(SnPh3)4(THF)4. But there is no direct evidence of π-back donation in the compound.  相似文献   

13.
The aromatic character of divalent three, five and seven-membered rings C2H2M, C4H4M and C6H6M(M=C, Si, Ge, Sn and Pb) is investigated through magnetic and geometric criteria by Density Functional Theory (DFT)method using 6-311++G(3df,2p) basis set of the GAUSSIAN 98 program. The result of Nucleus-independent Chemical Shifts (NICS)(0.5) calculations show an aromatic character for singlet state of C2H2M(M=C, Si, Ge, Sn and Sn) and nonaromatic character for triplet states of C2H2M(except M=Ge and Pb). NICS (0.5) calculations show nonaromatic character for the singlet state of C4H4C and antiaromatic character for C4H4M(M=Si, Ge, Sn and Pb). In contrast, NICS (0.5) calculations indicate antiaromatic character for the triplet state of C4H4C and nonaromatic character to C4H4M(M=Si, Ge, Sn and Pb). NICS (0.5) calculations show a slightly homoaromatic character for the singlet state of C6H6M and anti-aromatic character for triplet state of C6H6M.  相似文献   

14.
The Internal Vibration of the Tetrahetero-Tetrahedrane Anions Ge44?, Sn44-, and Pb44 The Frequencies of the internal vibrations ν1 (A1), ν2(E), ν3(T2) of the tetrahetero-tetrahedrane an ions Ge44- and Sn44- are determined from the infrared and Raman spectra of K7LiGe8 and KSn, respectively. A comparison of the characteristic vibration of tetrahedrane anions X44- (X = Si, Ge, Sn)and the isoelectronic neutral tetrahedranes Y4 of the neighbouring elements (Y = P, As, Sb) shows a rather constant ratio of the corresponding frequencies k = v?(X44-) = 0,77. This allows for an estimate of v?(Pb44-) from the known Bi4data. In the inflated spectrum of KPb bands are observed in the predicted frequency range.  相似文献   

15.
The N-heterocyclic carbene (NHC)-stabilized phosphinidenide, SIMesPK [SIMes=1,3-bis(2,4,6-trimethylphenyl)imidazolidine-2-ylidene], was used as an (NHC)P-transfer reagent for the synthesis of the low-valent Group 14 ate complexes K[(SIMesP)3E] (E=Ge: 2 , Sn: 3 , Pb: 4 ), which were characterized by 1H NMR, 31P NMR, IR spectroscopy as well as elemental and X-ray analysis. Furthermore, SIMesPK was used in reactions with potassium amides and alkoxides to form the molecular phosphorus–potassium clusters [K4(SIMesP)2(hmds)2] [ 5 , hmds=N(SiMe3)2] and [K6(SIMesP)2(OtBu)4] ( 6 ). Finally, the reaction of SIMesPK with Li[Al(OC4F9)4] led to the potassium-rich ionic compound [(SIMesP)4K5][Al(OC4F9)4] ( 7 ).  相似文献   

16.
Reactions of cobaltocenium salts [(C5R5)2Co]PF6 (R = H, Me) with Ph3ELi (E = Si, Ge, Sn) and with Ph2SbLi mainly follow two pathways (nucleophilic addition and one-electron reduction), yielding cobalt cyclopentadiene-cyclope ntadienyl complexes (4-Ph3EC5R5)(5-C5R5)Co (R = H, E = Si, Ge, Sn; R = Me, E = Si) and cobaltocenes (C5R5)2Co (R = H, Me), respectively. The contribution of nucleophilic addition of Ph3ELi decreases in the order of elements Si > Ge > Sn and when hydrogen atoms are replaced by methyl groups in the initial cobaltocenium salt. Thermal decomposition of cobalt cyclopentadiene-cyclopentadienyl complexes results in substituted cobaltocenes.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 10, pp. 2557–2560, October, 1996.  相似文献   

17.
The synthesis of the N-aminocarbazole R-NH2 ( 2 ) is reported. Subsequent reaction with bis[bis(trimethylsilyl)amido]tetrylenes E[N(SiMe3)2]2 (E=Ge, Sn, or Pb) allowed the isolation of formal hydrazidotetrylene derivatives, R−N(H)EN(SiMe3)2 ( 3 ) that includes the first example of a hydrazidoplumbylene to date. Thermal decomposition of these compounds resulted in the elimination of “NH” and afforded the tetrylenes R-EN(SiMe3)2 ( 4 ).  相似文献   

18.
Reactions of Zinc and Cadmium Halides with Tris(trimethylsilyl)phosphane and Tris(trimethylsilyl)arsane ZnCl2 reacts with E(SiMe3)3 (E = P, As) in toluene in the presence of PnPr3 to give the binuclear complexes [Zn2Cl2{E(SiMe3)2}2(PnPr3)2] · C7H8 (E = P 1 , As 2 ). Therefore by the use of PiPr3 clusters consisting of ten metal atoms are obtained, [Zn10Cl12(ESiMe3)4(PiPr3)4] (E = P 3 , As 4 ). As a result of the reaction of CdBr2 with P(SiMe3)3 the compound [CdBr2{P(SiMe3)3}]2 ( 5 ) can be isolated at –40 °C. In the presence of PnPr3 CdBr2 reacts with P(SiMe3)3 forming the binuclear complex [Cd2Br2{P(SiMe3)2}2(PnPr3)2] · thf ( 6 ). The same reaction with PiPr3 yields to the cluster [Cd10Br12(PSiMe3)4{P(SiMe3)3}4] · 2 C7H8 ( 7 ). ZnI2 and CdI2 react with As(SiMe3)3 to yield the complexes [MI2{As(SiMe3)3}]2 (M = Zn 8 , Cd 9 ). In the case of CdI2 additionally the cluster [Cd10I12(AsSiMe3)4 · {As(SiMe3)3}4] · 4,5 C7H8 ( 10 ) is formed which is analogous to the compounds 3 , 4 and 7 . In the presence of [PnBu4]I 8  reacts in THF to give the ionic compound [PnBu4]2[Zn6I6(AsSiMe3)4(thf)2] · C6H6 ( 11 ).  相似文献   

19.
The reaction of the intramolecular germylene-phosphine Lewis pair (o-PPh2)C6H4GeAr* ( 1 ) with Group 15 element trichlorides ECl3 (E=P, As, Sb) was investigated. After oxidative addition, the resulting compounds (o-PPh2)C6H4(Ar*)Ge(Cl)ECl2 ( 2 : E=P, 3 : E=As, 4 : E=Sb) were reduced by using sodium metal or LiHBEt3. The molecular structures of the phosphine-stabilized phosphinidene (o-PPh2)C6H4(Ar*)Ge(Cl)P ( 5 ), arsinidene (o-PPh2)C6H4(Ar*)Ge(Cl)As ( 6 ) and stibinidene (o-PPh2)C6H4(Ar*)Ge(Cl)Sb ( 7 ) are presented; they feature a two-coordinate low-valent Group 15 element. After chloride abstraction, a cyclic germaphosphene [(o-PPh2)C6H4(Ar*)GeP] [B(C6H3(CF3)2)4] ( 8 ) was isolated. The 31P NMR data of the germaphosphene were compared with literature examples and analyzed by quantum chemical calculations. The phosphinidene was treated with [iBu2AlH]2, and the product of an Al−H addition to the low-valent phosphorus atom (o-PPh2)C6H4(Ar*)Ge(H)P(H)Al(C4H9)2 ( 9 ) was characterized.  相似文献   

20.
Extraction of a solid with the nominal composition “K2GeBi” with 1,2‐diaminoethane (en) in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (crypt‐222) afforded the salt [K(crypt‐222)]4(Ge4Bi14). The 18‐atom Zintl anion (Ge4Bi14)4− has a heretofore unknown molecular topology, which can be thought of as the formal condensation product of two E113− cages along a shared Ge4 waist. In this way, (Ge4Bi14)4− represents the largest and most structurally complex Bi‐containing polyanion. We describe its stepwise formation, its geometric and electronic structure, and comment on relative stabilities of isomers with different distributions of the four Ge atoms on the 18 positions that were investigated using DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号