首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Since their discovery in 2011, MXene compounds, and in particular the Ti3C2-based phases, have gained increasing interest from researchers leading to over 2000 scientific works in 2020. The peculiar morphological, charge transport, and surface properties make the MXenes ideal materials for energy storage applications such as active material in alkaline ion batteries and supercapacitors, as conductive or buffer agent in composite electrodes for high energy applications, and as electrocatalytic materials for oxygen evolution or redox flow batteries. Among this almost endless literature, this work focuses on 5 recent articles (2019/2020) that summarize the potential of MXenes in different energy storage applications, also resuming the most promising preparatory routes regarding industrial scalability.  相似文献   

2.
Rapid prototyping methods such as additive manufacturing (three dimensional printing) and laser scribing have attracted much attention for manufacturing next-generation electrochemical energy storage devices because of their simplicity, low cost, medium throughput, and ability to prepare electrodes with unique form factors and multiple functionalities, such as stretchability, flexibility, and wearability. Of the wide array of potential active materials that can be used for energy storage, two dimensional materials such as graphene, MXenes, and MoS2 have exceptionally high conductive surface areas and are attractive candidates for printing thick, high loading supercapacitors and batteries. In this brief review, we highlight recent progress and major challenges which must be overcome to make these manufacturing approaches and the resulting printed devices commercially viable.  相似文献   

3.
Porous metallic structures are regularly used in electrochemical energy storage (EES) devices as supports, current collectors, or active electrode materials. Bulk metal porosification, dealloying, welding, or chemical synthesis routes involving crystal growth or self-assembly, for example, can sometimes provide limited control of porous length scale, ordering, periodicity, reproducibility, porosity, and surface area. Additive manufacturing has shown the potential to revolutionize the fabrication of architected metals, allowing complex geometries not usually possible by traditional methods, by enabling complete design freedom of a porous metal based on the required physical or chemical property to be exploited. We discuss properties of porous metal structures in EES devices and provide some opinions on how architected metals may alleviate issues with electrochemically active porous metal current collectors, and provide opportunities for optimum design based on electrochemical characteristics required by batteries, supercapacitors or other electrochemical devices.  相似文献   

4.
The search for new materials that can hold the heteroatoms viz., nitrogen, oxygen and phosphorus becomes crucial for robust energy storage and conversion devices. Recently, ammonium metal phosphates (NH4MPO4, M = Mn2+, Ni2+, Co2+, Fe2+, etc.) and their hydrates have emerged as promising materials because of their attractive virtues; rapid electron transport because of the existence of more electroactive sites; and highly redox-active centres and rapid ion transport because of the intercalated water interactions. The synthesis of different dimensionalities (0D–3D) of these materials is facile and robust that boosts the electrochemical performances to some extent. This review emphasises the recent state-of-the-art work published on the ammonium metal phosphates for energy storage and a brief discussion on key challenges and future directions.  相似文献   

5.
Energy storage and conversion have become a prime area of research to address both the societal concerns regarding the environment and pragmatic applications such as the powering of an ever increasing cadre of portable electronic devices. This paper reviews the use of fluoride based electrode materials in energy storage devices. The majority of the energy storage and conversion applications for fluorine based materials resides in present and future lithium battery chemistries. The use of fluorides either as coatings or in the formation of oxyfluorides has resulted in a marked increase of the stability and morphological development of electrodes for use in nonaqueous lithium and lithium-ion batteries. Pure fluorides, despite their intrinsic insulative properties, have demonstrated the capability to exhibit exceptional energy densities and have the potential to open the door to future high energy lithium battery technology.  相似文献   

6.
Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field.  相似文献   

7.
Quantum dots (QDs) with ultrahigh surface-to-volume ratio, abundant edge active sites, forceful quantum confinement and other remarkable physio-chemical properties, have garnered considerable research interest. MXene QDs, as an emerging member of them, have also attracted wide attention in the last six years, and shown great achievements in many fields. This critical review systematically summarizes the various methods for synthesizing MXene QDs. The characteristics and corresponding applications of various MXene QDs are also presented. The advantages and disadvantages of various synthetic methods, and the limitations of corresponding MXene QDs are compared and highlighted. Finally, the challenges and perspectives of synthesizing MXene QDs are proposed. We hope this review will enlighten researchers to the fabrication of more advancing and promising MXene-based QDs with proprietary properties in diverse applications.  相似文献   

8.
Additive manufacturing and 3D printing in particular have the potential to revolutionize existing fabrication processes, where objects with complex structures and shapes can be built with multifunctional material systems. For electrochemical energy storage devices such as batteries and supercapacitors, 3D printing methods allows alternative form factors to be conceived based on the end use application need in mind at the design stage. Additively manufactured energy storage devices require active materials and composites that are printable, and this is influenced by performance requirements and the basic electrochemistry. The interplay between electrochemical response, stability, material type, object complexity and end use application are key to realising 3D printing for electrochemical energy storage. Here, we summarise recent advances and highlight the important role of methods, designs and material selection for energy storage devices made by 3D printing, which is general to the majority of methods in use currently.  相似文献   

9.
Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium–sulfur batteries, lithium–oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal–air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density,and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device.  相似文献   

10.
MXene作为一种拥有层状结构的二维材料,具有良好的吸附催化性能、较宽的光吸收范围、高导热性、高硬度、高熔点、高导电性以及大比表面积等物理和化学特性,在储能、催化、润滑、抗菌、电磁屏蔽等领域有着较高应用价值。本文着重介绍了由前驱体MAX相获得MXene的制备方法,综述了MXene复合材料在光催化固氮、析氢、CO2还原等能源光催化领域的应用进展。  相似文献   

11.
利用碳空位缺陷有序化策略构筑了多层六方孔洞MXene电极材料,在软包超级电容器中实现了高比容量和高能量密度水系钾离子存储。该电极材料具有较大比表面积的三维六方孔洞结构,为储钾提供了更多的活性位点。结合六方孔洞内壁新暴露的钛原子的化合价变化引起的赝电容效应,阐明了多层六方孔洞MXene水系钾离子超级电容器比容量提高的内在原因。通过密度泛函理论计算多层六方孔洞MXene对钾离子的吸附能,并结合电化学储钾性能实验及动力学分析,确定了钾离子被吸附的最佳位置,得出了钾离子的吸附规律。通过定量分析多层六方孔洞 MXene中电子的能带结构和差分电荷密度等电子传输规律,揭示了其水系钾离子超级电容器具有高电导率和良好倍率性能的内在机理。  相似文献   

12.
Electroanalysis has obtained considerable progress over the past few years, especially in the field of electrochemical sensors. Broadly speaking, electrochemical sensors include not only conventional electrochemical biosensors or non-biosensors, but also emerging electrochemiluminescence (ECL) sensors and photoelectrochemical (PEC) sensors which are both combined with optical methods. In addition, various electrochemical sensing devices have been developed for practical purposes, such as multiplexed simultaneous detection of disease-related biomarkers and non-invasive body fluid monitoring. For the further performance improvement of electrochemical sensors, material is crucial. Recent years, a kind of two-dimensional (2D) nanomaterial MXene containing transition metal carbides, nitrides and carbonitrides, with unique structural, mechanical, electronic, optical, and thermal properties, have attracted a lot of attention form analytical chemists, and widely applied in electrochemical sensors. Here, we reviewed electrochemical sensors based on MXene from Nov. 2014 (when the first work about electrochemical sensor based on MXene published) to Mar. 2021, dividing them into different types as electrochemical biosensors, electrochemical non-biosensors, electrochemiluminescence sensors, photoelectrochemical sensors and flexible sensors. We believe this review will be of help to those who want to design or develop electrochemical sensors based on MXene, hoping new inspirations could be sparked.  相似文献   

13.
《中国化学快报》2020,31(9):2280-2286
In order to further improve the potential application of nickel-cobalt oxide (NiCoO) in supercapacitors, we use controlled calcination of different Ni-Co-MOF ([NiCo(HBTC)(4,4′-bipy)]) composites to obtain five kinds of nickel doped NiCoO (N-NiCoO) with different Ni/Co molar ratio. These N-NiCoO materials with unique hexagonal nanoplates structure, high specific surface area and high porosity indicate high and stable electrochemical activity. In particular, N-NiCoO-2 with a Ni/Co molar ratio of 2:1 exhibits the highest 945.79 F/g specific capacitance at 1 A/g and a high cycle stability of only 6.7% attenuation after 5000 cycles. Apart from the certain percentage of NiCoO with higher conductivity, nitrogen doping provides more reactive sites and the specific porous hexagonal nanoplates structure of the product itself accelerate electron transfer and promote electrolyte diffusion can more effectively enhance the electrochemical performance. Therefore, N-NiCoO synthesized via a simple method exhibit exciting potential and can be used as an electrode material for supercapacitors with good performance.  相似文献   

14.
Ionic liquids are a class of solvents widely studied in the literature for various applications. As a subclass of ionic liquids, redox ionic liquids can endow charge exchange properties (electrons transfer) to these electrolytes for electrochemical energy storage. In this review article, we propose to study this family of ionic liquids and suggest a chronological classification. We introduce five generations of redox ionic liquids with different basic compounds such as polyethylene glycol, ferrocene, different linker lengths, TFSI anion, and biredox ionic liquids. The versatility of the redox ionic liquids synthesis will be discussed as well as the fundamental and applied aspects of their use as electrolytes, which have high charge densities. The impact of the redox ionic liquids on the electrochemical mechanisms will be described. We also present how the redox shuttle effect, detrimental to supercapacitors, can be prevented while it can be used to improve lithium-ion batteries.  相似文献   

15.
A key challenge in the development of electrochemical energy storage (EES) is the design and engineering of electrode materials for electrochemical reactions. Transition metal oxalates (TMOxs) have been widely used in various EES applications due to their low cost, simple synthesis, and excellent electrochemical performance. In this review, the recent advances in the design and engineering of transition metal oxalate-based micro- and nanomaterials for EES are summarized. Specifically, the survey will focus on three types of micro- and nano-scale TMOxs (monometallic, bimetallic, and trimetallic TMOxs), their composites (TMOx-metal oxide, TMOx-hydroxide, TMOx-GO, and TMOx-MOFs composites), and derivatives, including transition metal oxides (TiO2, V2O5, MnxOy, Co3O4, NiO, CuO, and Nb2O5), multi-transition metal oxides (MCo2O4 (M = Ni, Cu, and Zn), NiMn2O4, and NxOy-MxOy), transition metal sulfide (NiS2), and carbon materials (ordinary carbon, GO and their composites), within the context of their intrinsic structure and corresponding electrochemical performance. A range of experimental variables will be carefully analyzed, such as sample synthesis, crystal structure, and electrochemical reaction mechanism. The applications of these materials as EES electrodes are then featured for supercapacitors (SCs) and lithium-ion batteries (LIBs). We conclude the review with a perspective of future research prospects and challenges.  相似文献   

16.
The intercalation of cations into layered-structure electrode materials has long been studied in depth for energy storage applications. In particular, Li+-, Na+-, and K+-based cation transport in energy storage devices such as batteries and electrochemical capacitors is closely related to the capacitance behavior. We have exploited different sizes of cations from aqueous salt electrolytes intercalating into a layered Nb2CTx electrode in a supercapacitor for the first time. As a result, we have demonstrated that capacitive performance was dependent on cation intercalation behavior. The interlayer spacing expansion of the electrode material can be observed in Li2SO4, Na2SO4, and K2SO4 electrolytes with d-spacing. Additionally, our results showed that the Nb2CTx electrode exhibited higher electrochemical performance in the presence of Li2SO4 than in that of Na2SO4 and K2SO4. This is partly because the smaller-sized Li+ transports quickly and intercalates between the layers of Nb2CTx easily. Poor ion transport in the Na2SO4 electrolyte limited the electrode capacitance and presented the lowest electrochemical performance, although the cation radius follows Li+>Na+>K+. Our experimental studies provide direct evidence for the intercalation mechanism of Li+, Na+, and K+ on the 2D layered Nb2CTx electrode, which provides a new path for exploring the relationship between intercalated cations and other MXene electrodes.  相似文献   

17.
By tuning the structure of hard template kaolinite, we have achieved a template directed synthesis of holey carbon nanosheet/nanotube material. This carbon nanomaterial with in-plane and out-of-plane pores has shown promising electrochemical energy storage capacity.  相似文献   

18.
The development of redox electrolytes using organic active materials as alternatives to metal-based species for redox flow batteries is booming recently. However, challenges and gaps remain toward commercialization. This review briefly discusses the most recent advances of using electroactive organic materials. Strategies such as chemical modification through molecular engineering and new efforts toward energy-rich electrolytes and high-power electrolytes are addressed. Furthermore, the limiting factors governing the cycling life are summarized.  相似文献   

19.
Three-dimensional porous nitrogen-doped graphene aerogels (NGAs) were synthesized by using graphene oxide (GO) and chitosan via a self-assembly process by a rapid method. The morphology and structure of the as-prepared aerogels were characterized. The results showed that NGAs possesed the hierarchical pores with the wide size distribution ranging from mesopores to macropores. The NGAs carbonized at different temperature all showed excellent electrochemical performance in 6 mol/L KOH electrolyte and the electrochemical performance of the NGA-900 was the best. When working as a supercapacitor electrode, NGA-900 exhibited a high specific capacitance (244.4 F/g at a current density of 0.2 A/g), superior rate capability (51.0% capacity retention) and excellent cycling life (96.2% capacitance retained after 5000 cycles).  相似文献   

20.
To address climate change and promote environmental sustainability, electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels, catering to the escalating demand for energy. Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts, coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes. Scanning elec...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号