首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between NAD+ and NADP+ and the divalent ions Mg2+, Mn2+ and Co2+ have been studied by circular dichroism in the UV range. A visible C.D. study has been carried on the Co2+ complexes.The observed changes of the UV and C.D. as a function of temperature clearly show that the metal ion does not bridge the purine base and the nicotinamide.The observed changes of the UV C.D. as a function of temperature clearly show that the metal ion does not bridge the purine base and the nicotinamide.The strong modification of the UV C.D. and the appearance of visible C.D. in 0.1 M NAD+ or NADP+ solutions in presence of Co2+ which occurs when the N(1) adenine atom is deprotonated, has been ascribed to the formation of a 1:2 Co2+-dinucleotide complex where the two adenine bases are stacked.  相似文献   

2.
A novel design strategy for ratiometric fluorescence signaling of transition metal ions, involving both photoinduced electron transfer and resonance energy transfer mechanisms, has been tested on a model system comprising dual fluorophores.  相似文献   

3.
Strong luminescence CdS quantum dots (QDs) have been prepared and modified with l-cysteine by a facile seeds-assistant technique in water. They are water-soluble and highly stable in aqueous solution. CdS QDs evaluated as a luminescence probe for heavy and transition metal (HTM) ions in aqueous solution was systematically studied. Five HTM ions such as silver(I) ion, copper(II) ion, mercury(II) ion, cobalt(II) ion, and nickel(II) ion significantly influence the photophysics of the emission from the functionalized CdS QDs. Experiment results showed that the fluorescence emission from CdS QDs was enhanced significantly by silver ion without any spectral shift, while several other bivalent HTM ions, such as Hg(2+), Cu(2+), Co(2+), and Ni(2+), exhibited effective optical quenching effect on QDs. Moreover, an obvious red-shift of emission band was observed in the quenching of CdS QDs for Hg(2+) and Cu(2+) ions. Under the optimal conditions, the response was linearly proportional to the concentration of Ag(+) ion ranging from 1.25 x 10(-7) to 5.0 x 10(-6)molL(-1) with a detection limit of 2.0 x 10(-8)molL(-1). The concentration dependence of the quenching effect on functionalized QDs for the other four HTM ions could be well described by typical Stern-Volmer equation, with the linear response of CdS QDs emission proportional to the concentration ranging from 1.50 x 10(-8) to 7.50 x 10(-7)molL(-1) for Hg(2+) ion, 3.0 x 10(-7) to 1.0 x 10(-5)molL(-1) for Ni(2+) ion, 4.59 x 10(-8) to 2.295 x 10(-6)molL(-1) for Cu(2+) ion, and 1.20 x 10(-7) to 6.0 x 10(-6)molL(-1) Co(2+) ion, respectively. Based on the distinct optical properties of CdS QDs system with the five HTM ions, and the relatively wide linear range and rapid response to HTM ions, CdS QDs can be developed as a potential identified luminescence probe for familiar HTM ions detection in aqueous solution.  相似文献   

4.
《印度化学会志》2023,100(3):100931
Some new chemo-sensors (4,4'-((1E,1′E)-(2,2′-dichloro-[1,1′-biphenyl]-4,4′-diyl)bis(diazene-2,1-diyl))bis(3,5-dihydroxybenzoic acid), 4-((E)-(4-(N-(4-((E)-(4-carboxy-2,6-dihydroxyphenyl)diazenyl)phenyl)sulfamoyl)phenyl)diazenyl)-3,5-dihydroxybenzoic acid, 4-((E)-(4-((4-((E)-(4-carboxy-2,6-dihydroxyphenyl)diazenyl)-2-sulfophenyl)amino)phenyl)diazenyl)-3,5-dihydroxybenzoic acid) were synthesized. These synthesized sensors were then characterized by FTIR, TLC, UV–Visible spectrophotometry, and NMR techniques. The sensors showed the best results for detection of all type of heavy metal ions simply by changing the colour of metal ion solution and by shifting in the λmax values of sensors due to interactions.  相似文献   

5.
Copper is a highly toxic environmental pollutant with bioaccumulative properties. Therefore, sensitive detection of Cu2+ is very important to prevent over-ingestion, and visual detection is preferred for practical applications. In this work, we developed a simple and environmental friendly approach to synthesize hyperbranched polyethyleneimine-protected copper nanoclusters (hPEI-Cu NCs) with great stability against extreme pH, high ionic strength, thiols etching and light illumination, which were then conjugated to the surface of silica coated CdSe quantum dots (QDs) to design a ratiometric fluorescence probe. In the presence of different amounts of Cu2+ ions, the fluorescence of Cu NCs can be drastically quenched, while the emission from QDs stayed constant to serve as a reference signal and the color of the probe changed from yellow-green to red, resulting in ratiometric and visualization detection of Cu2+ ion with high accuracy. The detection limit for Cu2+ was estimated to be 8.9 nM, much lower than the allowable level of Cu2+ in drinking water (∼20 μM) set by U.S. Environmental Protection Agency. Additionally, this probe can be also applied for the determination of Cu2+ ion in complex real water samples.  相似文献   

6.
Here we reported that UV light irradiation can significantly enhance sensitivity of Ti/TiO2 electrode for determination of trace heavy metal ions (such as Cu2 +, Pb2 + and Cd2 +) owing to the photodeposition of metal ions on the surface of electrodes. The sensitivity of heavy metal ions can be selectively enhanced over the Ti/TiO2 electrode, which is attributed to matching between potential of heavy metal ions and the position of the conduction band of TiO2.  相似文献   

7.
We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe3O4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL?1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were <4.5 % for five separate batch determinations of 50 ng mL?1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g?1) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe3O4/dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of magnetic MOF-DHz nanocomposite.  相似文献   

8.
A simple BODIPY derivative is demonstrated to fluorescently sense Hg2+ in a ratiometric manner. The probe, an 8-methylthio-BODIPY, undergoes Hg2+-promoted hydrolysis to produce the corresponding 8-hydroxy-BODIPY, which conversion is accompanied with a large emission wavelength change. The probe can selectively detect Hg2+ over various other metal cations, with a detection limit of 1 ppb.  相似文献   

9.
Taking apart in numerous physiological and pathological activities, hydrogen sulfide(H2S) has been selected as an excellent target spot for the early diagnosis of cancer. So far, there are many mature probes that apply single optical imaging to monitor endogenous H2S. Nevertheless, a single modality is not an ideal method to afford accurate diagnostic information in comprehensive biological organisms. Herein, we developed a dual-modal imaging probe BWS. This designed probe ...  相似文献   

10.
吕美娇 《化学通报》2017,80(2):164-172,163
石墨烯具有超大的比表面积、较快的载流子迁移速率和优异的电催化活性,广泛用于环境保护与检测领域。过去几年,基于石墨烯的大批高效吸附剂和传感器均被开发并应用于重金属离子的污染治理。本文详细阐述了石墨烯基复合材料在重金属离子去除和检测方面的研究进展,同时比较了不同方法的优缺点,最后对后续研究方向进行了展望。  相似文献   

11.
The heavy metal ions,especially Cd~(2+),Pb~(2+) and Hg~(2+),show extremely hazard to the environment and human being.The measurement of heavy metal ions using sensors is catching more and more attention for its advantages of high sensitivity and selectivity,low-cost,convenience to handle and rapid detection.In recent years,nanomaterials such as gold nanoparticles(NPs),magnetic nanoparticles,graphene and nanocomposite materials are applied in sensors for improving sensitivity and selectivity,making the research on electrochemical(EC) sensors,spectrometric biosensors and colorimetric biosensors become a hot spot in the application to investigate heavy metal ions,in particular,Cd~(2+),Pb~(2+) and Hg~(2+).In this short review,the research of advanced detection of Cd~(2+),Pb~(2+) and Hg~(2+) and its progress based on nanomaterial sensors in recent years is reviewed.  相似文献   

12.
McCormick TM  Wang S 《Inorganic chemistry》2008,47(21):10017-10024
Two racemic atropisomeric N,N'-chelate ligands, bis{3,3'-[N-Ph-2-(2'-py)indolyl]} (1) and bis{3,3'-N-4-[N-2-(2'-py)indolyl]phenyl-2-(2'-py)indolyl} (2), have been found to be able to distinguish the enantiomers of Zn((R)-BrMeBu)2 and Zn((S)-BrMeBu)2 where BrMeBu = O2CCH(Br)CHMe2, with a distinct and intense CD spectral response at approximately the 10 microM concentration range. Computational studies established that the (R)-1-Zn((R)-BrMeBu)2 or (S)-1-Zn((S)-BrMeBu)2 diastereomer is more stable than (R)-1-Zn((S)-BrMeBu)2 or (S)-1-Zn((R)-BrMeBu)2. In addition, computational studies showed that the CD spectra of (S)-1-Zn((S)-BrMeBu)2 and (S)-1-Zn((R)-BrMeBu)2 are similar. (1)H NMR spectra confirmed that these two diastereomers exist in solution in about a 2:1 ratio for both complexes of 1 and 2. The distinct CD response of the racemic ligands 1 and 2 toward the chiral zinc(II) carboxylate is therefore attributed to the preferential formation of one diastereomer. The binding modes of the zinc(II) salt with ligands 1 and 2 were established by the crystal structures of the model compounds 1-Zn(tfa)2 and 2-Zn(tfa)2 (tfa = CF3CO2(-)), where the Zn(II) ion is chelated by the two central pyridyl groups in the ligand. Fluorescent titration experiments with various zinc(II) salts showed that the fluorescent spectrum of the atropisomeric ligand displays an anion-dependent change. The zinc(II) binding strength to the N,N'-chelate site of the atropisomeric ligand has been found to play a key role in the selective recognition of different chiral zinc(II) carboxylate derivatives by the racemic atropisomeric ligands.  相似文献   

13.
A family of water-soluble colorimetric chemosensors incorporating an anthraquinone signalling subunit functionalized with a polyamine chain that bears hydrophilic diethoxyphosphoryl moieties was prepared with the aim of assaying metal cations. The outstanding UV-Vis absorption properties of the 1-aminoanthraquinone chromophore allowed the efficient visual detection and quantification of copper(II) ions by chelators L(1)-L(3) in buffered aqueous solution. Moreover, the visible response of L(2) is not interfered by addition of large excesses of 13 common metal ions, whereas chemosensor L(3) produces also a color change in the presence of equimolar amounts of lead(II). Considering the 134 nm gap between both absorption maxima, simultaneous colorimetric quantification of lead and copper can be envisaged. Detailed potentiometric and spectrophotometric analysis of Cu(2+) complexation by L(2) and L(3), as well as Pb(2+) and Cd(2+) by L(3) was undertaken in order to gain a deeper insight into the pH-dependent speciation and understanding the color changing process. Furthermore, the inner coordination sphere of the [PbL(3)](2+) complex was probed by NMR spectroscopy.  相似文献   

14.
王敏  张静怡  刘娜  张迪 《分析试验室》2023,(8):1094-1099
基于香豆素和苯并吡啶基团,构建了用于二氧化硫(SO_(2))高效检测的荧光探针P1,其化学结构通过核磁氢谱(^(1)H NMR)、碳谱(^(13)C NMR)和高分辨质谱(HR-MS)确证。在缓冲溶液体系中,单独的探针P1具有微弱的荧光,识别SO_(2)后荧光发射强度明显增强,能够实现对SO_(2)的专一性裸眼识别,检出限为126 nmol/L。生物应用实验结果表明,该探针具有较低的细胞毒性,可用于生物活细胞中外源性SO_(2)的荧光成像。  相似文献   

15.
Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 104 M?1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.  相似文献   

16.
Salicylaldoxime-immobilized silica gel was characterized and used as a potential sorbent for heavy metal ions, viz. Cu(II), Ni(II), Co(II), and Zn(II). The experimental conditions were optimized both in batch and column processes to achieve the maximum efficiency. Kinetic and thermodynamic parameters as well as isotherm constants were evaluated to test the feasibility of the process. The role of various metal ions and different anions were tested in order to monitor the process in case of real samples. The alkali metal, alkaline earth metal, and ammonium salts do not have any effect on the said process. This differential behavior can be effectively used for the decontamination of alkali metal, alkaline earth metal, and ammonium salts from Cu(II), Ni(II), Co(II), and Zn(II) ions via solid phase extraction following AAS measurement. The purification of the salts was confirmed by voltammetric experiment.  相似文献   

17.
18.
Summary A liquid segmented post-column reaction system has been used to extract metal ions from an aqueous eluent into an organic solvent for fluorescence detection. The metals Zr(IV), Ga(III), Sc(III), Y(III), In(III), Al(III), La(III), Zn(II), Cd(II), Ca(II) and Mg(II) have been isocratically separated on a C18 column by virtue of the secondary chemical equilibrium established by an eluent containing n-octanesulfonate, tartaric acid, and hydroxyisobutyric acid. The chelating reagent 8-hydroxyquinoline dissolved in methylisobutyl ketone (MIBK) was used to extract the metals and a membrane type phase separator was effective at separating the phases and directing the organic stream to the detector. The response for this detection approach was linear for metal ion concentrations spanning the range of the detector, and detection limits for most metals were low parts-per-billion (ppb). Band broadening for the extraction system was examined and compared to a direct post-column reaction using oxine dissolved in acetone.  相似文献   

19.
In this work, a sensitive and selective detection method based on fluorescence resonance energy transfer (FRET) was developed for analyzing thiol compounds by using a novel fluorescent probe. The new fluorescent probe contains a disulfide bond which selectively reacts with nucleophilic thiolate through the thiol-disulfide exchange reaction. An obvious fluorescence recovery can be observed upon addition of the thiol compound in the fluorescent probe solution due to the thiol-disulfide exchange reaction and the destruction of FRET. This novel probe was successfully used to determine dithiothreitol (DTT), glutathione (GSH) and cysteine (Cys). The limits of detection (LOD) were 2.0 μM for DTT, 0.6 μM for GSH, and 0.8 μM for Cys. This new detection method was further investigated in the analysis of compound amino acid injection.  相似文献   

20.
A structural study of metal ion adducts of a new anthracycline disaccharide (MEN 10755) was undertaken. The trivalent lanthanide ion Yb(III) was employed as paramagnetic structural probe for 1H NMR analysis. Through a comparative spectroscopic investigation [UV–Vis absorption and circular dichroism (CD), 1H NMR], the isomorphism between its adducts with lanthanide ions (La3+, Yb3+, Lu3+) and calcium (one of the most representative biological cations) was verified. Solution behavior and cation binding were also investigated by means of optical titrations. In agreement with other anthracyclines, MEN 10755 was found to dimerize in aqueous solution [estimated Kdim (pH7.6) = 7 × 103], but not in methanol. A prevalent complex Yb3+–MEN 10755 (1:1) in both buffered aqueous and methanolic solutions (estimated Kcompl = 2100 M ?1) was observed. A numerical analysis of the LIR and LIS 1H NMR literature data for a similar adduct (Yb3+–daunorubicin) was performed using newly developed software, PERSEUS (Paramagnetic Enhanced Relaxation and Shifts for Eliciting Ultimate Structures), and the structure of the complex was characterized, locating definitely the binding site on the O‐11, O‐12 quinone system. The components of the anisotropic part of the magnetic susceptibility tensor were also determined. Finally, a study of the time‐dependent formation of an Yb3+–MEN 10755 complex through 1H NMR, UV–Vis CD and induced NIR CD was carried out. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号