首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang  Chuanchao  Song  Chuanhui  Wei  Zheng  Liang  Chen  Ran  Jianchuan  Cai  Yu  Dong  Xiaochen  Han  Wei 《中国科学:化学(英文版)》2020,63(7):946-956
Optical imaging and phototherapy in the second near-infrared window(NIR-Ⅱ, 900–1700 nm) can reduce tissue auto-fluorescence and photon scattering, which facilitates higher spatial resolution and deeper tissue penetration depth for solid tumor theranostics. Herein, a polycyclic naphthalenediimide(NDI) based chromophore 13-amino-4,5-dibromo-2,7-di(dodecan-6-yl)-1 H-isoquinolino[4,5,6-fgh]naphtho[1,8-bc][1,9]phenanthroline-1,3,6,8(2H,7H,9H)-tetraone(NDI-NA) was designed and synthesized. With large polycyclic π-systems, NDI-NA molecule possesses broad near-infrared(NIR) absorption(maximum at777 nm) and emission(maximum at 921 nm). By nanoprecipitation, NDI-NA nanoparticles(NPs) were formed in aqueous solution with J-aggregative state, which showed huge red-shift in both absorption spectrum(maximum at 904 nm) and emission spectrum(maximum at 1,020 nm), endowing NDI-NA NPs efficient NIR-Ⅱ fluorescence imaging capability. Besides, the NPs present effective tumor-targeting capability in vivo based on the enhanced permeation and retention(EPR) effect. More importantly, NDI-NA NPs simultaneously have high photothermal conversion efficiency(30.8%) and efficient reactive oxygen species generation ability, making them remarkably phototoxic to cancer cells. The polycyclic chromophore based multifunctional NDI-NA NPs as NIR-Ⅱ phototheranostic agents possess bright future for clinical NIR-Ⅱ imaging-guided cancer phototherapy.  相似文献   

2.
Jing Wu  Zhiqiang Ye  Guilan Wang  Jingli Yuan   《Talanta》2007,72(5):1693-1697
Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties have been prepared by copolymerization of a conjugate of (3-aminopropyl)triethoxysilane bound to a fluorescent Eu3+ complex, 4,4′-bis(1″,1″,1″-trifluoro- 2″,4″-butanedion-4″-yl)chlorosulfo-o-terphenyl-Eu3+ (APS-BTBCT-Eu3+), free (3-aminopropyl)triethoxysilane (APS) and tetraethyl orthosilicate (TEOS) in the presence of poly(vinylpyrrolidone) (PVP) stabilized magnetic Fe3O4 nanoparticles (10 nm) with aqueous ammonia in ethanol. The nanoparticles were characterized by transmission electron microscopy (TEM), spectrofluorometry and vibrating sample magnetometry methods. The direct-introduced amino groups on the nanoparticle's surface by using free APS in nanoparticle preparation facilitated the surface modification and bioconjugation of the nanoparticles. The nanoparticle-labeled transferrin was prepared and used for staining the cultured Hela cells. A time-resolved fluorescence imaging technique that can fully eliminate the fast-decaying background noises was developed and used for the fluorescence imaging detection of the cells. A distinct image with the high ratio of signal to noise (S/N) was obtained.  相似文献   

3.
《中国化学快报》2023,34(6):107889
Various phototheranostics have recently been developed for phototherapy. Through proper molecular design, the photochemical and photophysical properties of these phototheranostics can be promoted. Herein, an acceptor-donor-acceptor (A-D-A)-structured dye, BTP-4F-DMO, was synthesized and prepared into water-soluble nanoparticles (NPs). The obtained BTP-4F-DMO NPs had strong absorption from 650 nm to 850 nm and a fluorescence emission peak at ∼900 nm that tailed to ∼1100 nm. The NPs showed a superhigh photothermal conversion efficiency of 90.5% ± 5% and could simultaneously generate OH and 1O2 with a 1O2 generation quantum yield of 4.6% under 808 nm laser irradiation. Due to these advanced properties, BTP-4F-DMO NPs can switch the role of autophagy from pro-survival to pro-death, thereby further promoting cancer cell death. These features make BTP-4F-DMO NPs a promising multifunctional phototheranostic agent for NIR-II fluorescence/photoacoustic dual-mode imaging-guided synergetic photodynamic/photothermal therapy. In general, this work provides a strategy for expanding the biomedical applications of organic A-D-A-structured phototheranostics.  相似文献   

4.
Fluorescence switch plays a vital role in bioelectronics and bioimaging.Herein,we presented a new kind of facile electrostatic complex nanoparticles(ECNs)for fluorescence switching in cells and marking of individual cell.The ECNs were prepared by mixing positively charged poly(6-(2-(thiophen-3-yl)ethoxy)hexyl trimethylammonium bromide)(PT)and negatively charged diarylethene sodium salt(DAECOONa).DAE-COONa is a photoswitchable molecule which can be transformed between the ring-closed fo rm and ring-open form under the irradiation of UV or visible light.The closed-form of DAE-COONa can efficie ntly quench the fluorescence of PT through intermolecular energy transfer,while the open form of DAE-COONa does not influence the emission of PT.Thus,the fluorescence of ECNs can be modulated by light irradiation,and the ECNs with good fluorescence switching performance have been employed for fluorescence imaging and individual cell lighting up process successfully.We demonstrate that the electrostatic complex strategy provides a facile method to construct fluorescence switch fo r selective cell marking and imaging applications.  相似文献   

5.
A smart heteronanostructure has been constructed for targeted photodynamic therapy and magnetic fluorescent imaging of cancer cells using photosensitizer-incorporated G-quadruplex DNA functionalized magnetic nanoparticles.  相似文献   

6.
Size control: Particles designed for imaging and therapy need to be size tunable to ensure their optimal performance. A highly reproducible procedure for the preparation of uniform, spherical, lanthanide-based nanoparticles (NPs) was developed. The size of the particles can be predefined to an accuracy of up to a few nanometers by microwave-generated temperature control and the choice of aging time (see figure).  相似文献   

7.
Applying the fluorescent carbon dots as smart materials in anticancer therapy is of great interest. However, carbon dots for multimodal synergistic anticancer therapy, especially for the triple modality, is rarely reported. Herein, we successfully synthesized OCDs by citric acid and(1R,2S)-2-amino-1,2-diphenylethan-1-ol, which show aggregation-induced emission property and two-photon fluorescence imaging. Meanwhile, OCDs are ideal photosensitizers for photothermal therapy under 808 nm and Type Ⅰ...  相似文献   

8.
Using photo-actuated unimolecular logical switching attained reconstruction (PULSAR) nanoscopy, the structures of photoswitchable polymeric nanoparticles self-assembled on the surfaces of CaCl(2) crystals at the nanoscale were revealed; the photoswitching events and the locations of the photoswitchable fluorescent dyes inside the hydrophobic cores of the core-shell type polymeric nanoparticles were determined.  相似文献   

9.
《中国化学快报》2023,34(3):107786
Despite the rapid development of fluorescence detection modalities for disease diagnosis, novel fluorescent molecules and probes still face with tremendous pressure to transform before employing such fluorescent tools in the clinic. Impressively, the fluorescent probes based on the traditional fluorescent dye are expected to accelerate the transformation process. Herein, methylene blue is requisitioned to design the GSH responsive probe MB-SS-CPT elaborately. The as-synthesized MB-SS-CPT provides a dramatic optical advantage for GSH detection in vitro, cell fluorescence imaging, in vivo imaging, and antitumor therapy.  相似文献   

10.
11.
We report conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane (COE-POSS) loaded and pH-triggered chitosan/poly(ethylene glycol) nanoparticles with folic acid functionalization for targeted imaging of cancer cell nucleus.  相似文献   

12.
13.
Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive 19F magnetic resonance imaging (MRI) contrast agents inside MSNs, was developed. The nanoparticles were labeled with fluorescent dyes and functionalized with small molecule-based ligands for active targeting. This drug delivery system facilitated the monitoring of the biodistribution of the drug carrier by dual modal imaging (NIR/19F MRI). Furthermore, we demonstrated targeted drug delivery and cellular imaging by the conjugation of nanoparticles with folic acid. An anticancer drug (doxorubicin, DOX) was loaded in the pores of folate-functionalized MSNs for intracellular drug delivery. The release rates of DOX from the nanoparticles increased under acidic conditions, and were favorable for controlled drug release to cancer cells. Our results suggested that MSNs may serve as promising 19F MRI-traceable drug carriers for application in cancer therapy and bio-imaging.  相似文献   

14.
Fluorescent silica nanoparticles (SiNPs) were prepared by covalent attachment of fluorophores to the amino-modified surface of SiNPs with a typical diameter of 15 nm. The SiNPs are intended for use in novel kinds of fluorescence resonance energy transfer (FRET)-based affinity assays at the interface between nanoparticle and sample solution. Various labels were employed to obtain a complete set of colored SiNPs, with excitation maxima ranging from 337 to 659 nm and emission maxima ranging from 436 nm to the near infrared (710 nm). The nanoparticles were characterized in terms of size and composition using transmission electron microscopy, thermogravimetry, elemental analysis, and dynamic light scattering. The surface of the fluorescent SiNPs was biotinylated, and binding of labeled avidin to the surface was studied via FRET in two model cases. In the first, FRET occurs from the biotinylated fluorescent SiNP (the donor) to the labeled avidin (the acceptor). In the second, FRET occurs in the other direction. Aside from its use in the biotin–avidin system, such SiNPs also are believed to be generally useful fluorescent markers in various kinds of FRET assays, not the least because the fluorophore is located on the surface of the SiNPs (and thus always much closer to the second fluorophore) rather than being doped deep in its interior.  相似文献   

15.
16.
Shen XC  Jiang LF  Liang H  Lu X  Zhang LJ  Liu XY 《Talanta》2006,69(2):456-462
A novel method for the determination of 6-mercaptopurine (6MP) has been developed based on fluorescence enhancement of Au nanoparticles (AuNPs). The fluorescent AuNPs with mean diameter of ∼15 nm were synthesized in aqueous solution, exhibiting the stable maximum emission at 367 nm, under the excitation at wavelength of 264 nm. The AuNPs self-assembly with 6MP were characterized with transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, fluorescence and surface-enhanced Raman scattering (SERS) spectroscopy. The results revealed that the surface attachment through versatile binding sites of S10, N3, N9 and N7 atoms in 6MP produced the interparticle coupling and formed aggregates of AuNPs. As a result, the fluorescence emission enhancement was significantly observed upon AuNPs self-assembly with 6MP. The fluorimetric determination under optimal conditions indicated that 6MP could be quantified in good linearity range of 6.35 × 10−8 to 3.05 × 10−7 M, with a low detection limit of 4.82 × 10−10 M. The relative standard deviation (n = 11) was 1.8% at 2.54 × 10−8 M 6MP concentration level. The proposed method was successfully applied for the determination of 6MP in spiked human urine. The probable fluorescence enhancement mechanism was also discussed there.  相似文献   

17.
Multifunctional nanoparticles for multimodal imaging and theragnosis   总被引:1,自引:0,他引:1  
Nanomedicine is the biomedical application of nanoscale materials for diagnosis and therapy of disease. Recent advances in nanotechnology and biotechnology have contributed to the development of multifunctional nanoparticles as representative nanomedicine. They were initially developed to enable the target-specific delivery of imaging or therapeutic agents for biomedical applications. Due to their unique features including multifunctionality, large surface area, structural diversity, and long circulation time in blood compared to small molecules, nanoparticles have emerged as attractive preferences for optimized therapy through personalized medicine. Multimodal imaging and theragnosis are the cutting-edge technologies where the advantages of nanoparticles are maximized. Because each imaging modality has its pros and cons, the integration of several imaging agents with different properties into multifunctional nanoparticles allows precise and fast diagnosis of disease through synergetic multimodal imaging. Moreover, nanoparticles are not only used for molecular imaging but also applied to deliver therapeutic agents to the disease site in order to accomplish the simultaneous imaging and therapy called theragnosis. This tutorial review will highlight the recent advances in the development of multifunctional nanoparticles and their biomedical applications to multimodal imaging and theragnosis as nanomedicine.  相似文献   

18.
Highly luminescent LaF3:Ce3+/Tb3+ nanocrystals were successfully prepared and surface functionalized via Layer-by-Layer technology. These as-prepared nanocrystals are highly resistant to photobleaching and pretty dispersible in aqueous solution. Due to the efficient luminescence quenching of the nanocrystals by nucleic acids, a facile fluorescence quenching method was developed for the detection of trace amount of nucleic acids. Under optimal conditions, the fluorescence intensity was proportional to the DNA concentration over the range of 0.60–25.0 μg mL?1 for calf thymus DNA (ct-DNA) and 0.60–30.0 μg mL?1 for herring sperm DNA (hs-DNA), respectively. The corresponding detection limit is 0.21 μg mL?1 for ct-DNA and 0.31 μg mL?1 for hs-DNA, respectively. The results indicated that the reported method is simple and rapid with wide linear range. Also, the recovery and relative standard deviation of this method are reasonable and satisfactory.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号