首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this work, Norway spruce bark was used as a precursor to prepare activated biochars (BCs) via chemical activation with potassium hydroxide (KOH) as a chemical activator. A Box–Behnken design (BBD) was conducted to evaluate and identify the optimal conditions to reach high specific surface area and high mass yield of BC samples. The studied BC preparation parameters and their levels were as follows: pyrolysis temperature (700, 800, and 900 °C), holding time (1, 2, and 3 h), and ratio of the biomass: chemical activator of 1: 1, 1.5, and 2. The planned BBD yielded BC with extremely high SSA values, up to 2209 m2·g−1. In addition, the BCs were physiochemically characterized, and the results indicated that the BCs exhibited disordered carbon structures and presented a high quantity of O-bearing functional groups on their surfaces, which might improve their adsorption performance towards organic pollutant removal. The BC with the highest SSA value was then employed as an adsorbent to remove Evans blue dye (EB) and colorful effluents. The kinetic study followed a general-order (GO) model, as the most suitable model to describe the experimental data, while the Redlich–Peterson model fitted the equilibrium data better. The EB adsorption capacity was 396.1 mg·g−1. The employment of the BC in the treatment of synthetic effluents, with several dyes and other organic and inorganic compounds, returned a high percentage of removal degree up to 87.7%. Desorption and cyclability tests showed that the biochar can be efficiently regenerated, maintaining an adsorption capacity of 75% after 4 adsorption–desorption cycles. The results of this work pointed out that Norway spruce bark indeed is a promising precursor for producing biochars with very promising properties.  相似文献   

2.
Over the past decade, biochar (BC) has received significant attention in many environmental applications, including water purification, since it is available as a low-cost by-product of the energetic valorisation of biomass. Biochar has many intrinsic characteristics, including its porous structure, which is similar to that of activated carbon (AC), which is the most widely used sorbent in water treatment. The physicochemical and performance characteristics of BCs are usually non-homogenously investigated, with several studies only evaluating limited parameters, depending on the individual perspective of the author. Within this review, we have taken an innovative approach to critically survey the methodologies that are generally used to characterize BCs and ACs to propose a comprehensive and ready-to-use database of protocols. Discussion about the parameters of chars that are usually correlated with adsorption performance in water purification is proposed, and we will also consider the physicochemical properties of pollutants (i.e., Kow). Uniquely, an adsorption efficiency index BC/AC is presented and discussed, which is accompanied by an economic perspective. According to our survey, non-homogeneous characterization approaches limit the understanding of the correlations between the pollutants to be removed and the physicochemical features of BCs. Moreover, the investigations of BC as an adsorption medium necessitate dedicated parallel studies to compare BC characteristics and performances with those of ACs.  相似文献   

3.
多孔炭物理化学结构及其表征   总被引:3,自引:0,他引:3  
以碳为基本骨架的多孔炭因具有丰富的孔隙结构和表面化学宫能团,在吸附分离、催化、电子等领域应用广泛.在阐述多孔炭孔结构(物理结构)和表面化学宫能团(化学结构)基础上,重点介绍了透射电镜等可直接观察多孔炭孔结构的表征方法及Dubinin微孔充填理论、平均场密度泛函理论、吸附法、压汞法等表征多孔炭孔结构的主要理论及方法,以及...  相似文献   

4.
Microporous bacterial cellulose/potato starch (BC/PS) composites composed of a compact upper surface and transparent lower surface were fabricated by an in situ method by adding PS into the culture medium. The special structure formation mechanism was explored. Compared with original BC, a locally oriented surface morphology was observed when the concentration of PS in the culture media was above 1.0 %. Many more free spaces were made after modification with pore size reaching 40 μm. An obvious cell ingrowth tendency was observed on the porous surface of BC/PS composites as the starch content increased, while most of muscle-derived cells could only proliferate on the surface of original BCs. In vivo implantation showed the transparent fibrous lower side of BC/PS composites was much easier for neovascularization, and no obvious sign of inflammation was observed.  相似文献   

5.
In this study, the effect of coal micropores on the adsorption properties, especially the Langmuir pressure (P L ), was investigated by testing 11 coal samples from Northern China. The adsorption of CO2 at 273 K was utilized to analyze the pore size distribution. The results of these coals show that micropore volume and micropore surface area are the major factors affecting the Langmuir volume (V L ) but have weaker effects on P L . Micropore filling theory considers that some smaller micropores with an obvious overlapping adsorption force cause volume filling adsorption. These micropores firstly reach saturated adsorption, controlling the adsorption volume at the low-pressure stage and thus have a great effect on P L . Four times the methane molecular diameter, 1.5 nm, was assumed as the critical pore size with obvious overlapping adsorption force. The relationship between P L and the proportion of the pore volume below 1.5 nm to the micropore volume was investigated, and it was found that the higher the volume proportion of these small micropores was, the smaller the P L was, though two data points deviated from this trend. The reason for the anomalous coal samples could be the deviation from the assumed critical pore size of 1.5 nm for volume filling and the effects of the various micropore surface properties, which await further study. The micropore surface increases with increasing coal rank, as does V L . The proportion of pore volume below 1.5 nm increases with coal rank, and P L reverses. However, these relationships are discrete.  相似文献   

6.
Adsorption of natural organic matter (NOM) onto seven activated carbons with a wide range of surface properties was studied at high and low ionic strength over a range of pH values. From adsorption isotherm studies it was found that, for six of seven carbons, at low surface concentrations, increased ionic strength decreased NOM adsorption. As the surface concentration increased, the adsorption isotherms converged and intersected, after which the addition of salt resulted in increased adsorption. This “crossover point” marked a change in the adsorption mechanism from the “screening reduced” to the “screening enhanced” adsorption regimes. The adsorption mechanisms are extremely complicated and appear attributable to various factors, including electrostatic forces, pore volume distribution, and chemical interactions between the NOM and the surface functionalities on the carbon surfaces.  相似文献   

7.
Hierarchical porous carbons are widely used as adsorbents, catalyst supports, electrode materials, and other applications because of their high specific surface area (SSA), varied pore structure, adjustable porosity, and excellent physicochemical stability. Introducing heteroatoms such as N, P, or S, with electronegativities different from that of carbon, into the carbon skeleton can change the chemical properties of the surface and the density of the electron cloud around the carbon matrix, thus altering interactions of CO2molecules with the surface and improving CO2adsorption capacity. Therefore, doping heteroatoms in carbon materials has attracted a great amount of attention. In this paper, the template method was used with F108 (polyethylene glycol–polypropylene glycolpolyethylene glycol) as the template, resorcinol and formaldehyde solutions as the carbon sources, phosphoric acid as the phosphorus source, and KOH as the activator to prepare phosphorus-doped hierarchical porous carbons. Through a series of characterization and CO2adsorption experiments, the influence of the amount of KOH and template agent on the pore structure of carbon materials was studied. We conclude that these phosphorus-doped hierarchical porous carbon materials are promising CO2adsorbents.  相似文献   

8.
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N(2) adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation.  相似文献   

9.
Summary Highly efficient and fast exclusion-chromatographic separations of proteins are possible on chemically-modified, silica stationary phases. By optimizing the pH and the ionic strength of the aqueous eluent secondary interactions of the samples with surface groups can be excluded. Bonded propylamide groups proved to possess optimum properties for exclusion chromatography. With other functional groups adsorption effects cannot be excluded totally. The optimum pore size distribution for protein separation up to relative molecular masses of 500,000 daltnons is between 10nm and 50nm. With these silica-based phases the pore size distribution, the pore volume and the packing characteristics are independent of the eluent, therefore the same column can be used with aqueous as well with organic eluents. It is possible to correlate the elution volume (molecular size) of proteins with those of polystyrene standars. The recovery of the proteins and their biological activity has always been better than 90%. The potentialities of adsorption chromatography of proteins on chemically-bonded stationary plases with different functional groups are demonstrated.  相似文献   

10.
This study reports the synthesis of mesoporous metal-modified nitrogen doped activated carbon (AC-N-Mo) from date seeds by ZnCl2 activation and its applicability for selective adsorptive desulfurization of dibenzothiophene (DBT). The AC-N-Mo exhibits higher adsorption capacity for DBT at 100 mg-S/L with the maximum removal percentage of 99.7 % corresponding to 19.94 mg-S/g at room temperature than the unmodified carbon with 17.96 mg-S/g despite its highest surface area and pore volume of 1027 m2g?1 and 0.55 cm3g?1 respectively. The adsorption capacity breakthrough follows the order AC-N-Mo > AC-Mo > AC > AC-N. Also, AC-N-Mo displays excellent selectivity in the presence of aromatics (toluene, naphthalene, and 1-methylisoquinoline). The enhancement in the DBT uptake capacities of AC-N-Mo is attributed to the synergistic effect of nitrogen heteroatom that aids the dispersion of molybdenum nanoparticles on carbon surface thereby improving its surface chemistry and promising textural characteristics. The kinetic studies showed that the DBT adsorption proceeds via pseudo-second order kinetics while the isotherm revealed that Langmuir fit the data more accurately for the adsorbents. The physical properties (surface area, pore volume, particle size, etc.) and chemical properties (carbon content, etc.) of as-prepared adsorbents namely; AC, AC-N, AC-N-Mo, and AC-Mo were characterized by N2– physisorption, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Spectroscopy/Energy Dispersive Spectroscopy (SEM/EDS), Raman Spectroscopy (RS), Fourier Transform Infrared Spectroscopy (FTIR) and Ammonia-Temperature-Programmed Desorption (NH3-TPD).  相似文献   

11.
Adsorption of three nitrogen-heterocyclic compounds (NHCs), pyridine, indole, and quinoline, on a new porous carbonaceous adsorbent, bamboo charcoal (BC), is investigated. Different structures and surface properties of BC are created by HNO(3) and NaOH treatment as well as by microwave (MW) radiation. HNO(3) treatment decreases surface area, micropore volume, and surface hydrophobicity, whereas NaOH treatment increases surface area and micropore volume. MW treatment dramatically increases hydrophobicity and fraction of aromatic structure. Adsorption isotherms of NHCs are nonlinear and better fitted by Freundlich model (FM) compared with Langmuir model (LM) and Polanyi-Manes model (PMM). The maximum adsorption capacities for pyridine, indole, and quinoline reach 42.92, 93.24, and 91.74mg g(-1), respectively, at an initial concentration of 200mg L(-1). Surface area, hydrophobicicty, and electrostatic and π-π electron-donor-acceptor (EDA) interactions are accountable for NHC adsorption. A model relating NHC adsorption (log K) and adsorbent-adsorbate physicochemical properties is developed to measure the relative contribution of these interactions giving the sequence of surface area>hydrophobic interaction>electrostatic interaction>π-π EDA interaction.  相似文献   

12.
Four different types of amine-attached MCM-48 silicas were prepared and investigated for CO(2) separation from N(2). Monomeric and polymeric hindered and unhindered amines were attached to the pore surface of the MCM-48 silica and characterized with respect to their CO(2) sorption properties. The pore structures and amino group content in these modified silicas were investigated by XRD, FT-IR, TGA, N(2) adsorption/desorption at 77 K and CHN/Si analysis, which confirmed that in all cases the amino groups were attached to the pore surface of MCM-48 at 1.5-5.2 mmol/g. The N(2) adsorption/desorption analysis showed a considerable decrease of the pore volume and surface area for the MCM-48 silica containing a polymeric amine (e.g., polyethyleneimine). The CO(2) adsorption rates and capacities of the amine-attached MCM-48 samples were studied employing a sorption microbalance. The results obtained indicated that in addition to the concentration of surface-attached amino groups, specific interactions between CO(2) and the surface amino groups, and the resultant pore structure after amine group attachment have a significant impact on CO(2) adsorption properties of these promising adsorbent materials.  相似文献   

13.
选用四种生物质即稻杆(RS)、稻壳(RH)、松木屑(WC)和棉花杆(CS)制备了生物质焦,利用N2吸附/脱附和傅里叶变换红外光谱(FT-IR)仪,对制备的生物质焦的孔隙结构和表面化学性质进行了表征,分析生物质种类和制焦条件对生物质焦性质的影响。在固定床汞吸附实验台上研究了生物质焦的脱汞性能。结果表明,随着热解温度的升高,生物质焦的比表面积、微孔容积、分形维数等参数有先增大后减小的趋势。WC600、RS600、RH600均有较好的孔结构特性;热解温度升高,生物质焦表面官能团的数量和种类随之减少。不同生物质制备的焦样表面官能团的数量和种类差异较大。其中,RH600和RS600的表面官能团的种类比较丰富,而且含量相对较多。但WC600和CS600表面的官能团种类和数量都很少。生物质焦的单位汞吸附容量与其分形维数以及微孔容积之间并非简单的依附关系,其吸附能力还受含氧官能团等其他因素的影响。  相似文献   

14.
Fir wood was first carbonized for 1.5 h at 450 degrees C, then soaked in a KOH solution KOH/char ratio of 1, and last activated for 1 h at 780 degrees C. During the last hour CO2 was poured in for further activation for 0, 15, 30, and 60 min, respectively. Carbonaceous adsorbents with controllable surface area and pore structure were chemically activated from carbonized fir wood (i.e., char) by KOH etching and CO2 gasification. The pore properties, including the BET surface area, pore volume, pore size distribution, and pore diameter, of these activated carbons were first characterized by the t-plot method based on N2 adsorption isotherms. Fir-wood carbon activated with CO2 gasification from 0 to 60 min exhibited a BET surface area ranging from 1371 to 2821 m2 g(-1), with a pore volume significantly increased from 0.81 to 1.73 m2 g(-1). Scanning electron microscopic (SEM) results showed that the surfaces of honeycombed holes in these carbons were significantly different from those of carbons without CO2 gasification. The adsorption of methylene blue, basic brown 1, acid blue 74, p-nitrophenol, p-chlorophenol, p-cresol, and phenol from water on all the carbons studied was examined to check their chemical characteristics. Adsorption kinetics was in agreement with the Elovich equation, and all equilibrium isotherms were in agreement with the Langmuir equation. These results were used to compare the Elovich parameter (1/b) and the adsorption quantity of the unit area (q(mon)/Sp) of activated carbons with different CO2 gasification durations. This work facilitated the preparation of activated carbon by effectively controlling pore structures and the adsorption performance of the activated carbon on adsorbates of different molecular forms.  相似文献   

15.
活性炭纤维孔结构控制和表面改性   总被引:23,自引:0,他引:23  
活性炭纤维(ACF-ActivatedCarbonFiber)是本世纪七十年代发展起来的纤维状吸附剂[1]。其吸附性能与表面积、细孔直径、细孔分布等物理结构密切相关,同时与其表面化学结构密不可分,本文综述介绍ACF的孔结构控制方法和表面化学改性与吸附性能的关系。  相似文献   

16.
This paper addresses the role of accessibility for adsorption in porous solids on the adsorption properties including Henry constant, adsorption isotherms and isosteric heat of adsorption. The relevant parameters are the accessible volume, the accessible geometrical surface area and the accessible pore size and its associated volume. This concept will be demonstrated to be important and calls for the need to consider adsorption characteristics in the most coherent and consistent manner. It is particularly reinforced by the limitations inherent in the conventional ways in determining the void volume, surface area and pore size. We provide a number of examples to support this; the challenge that faces us is the development of consistent experimental procedures to determine these accessible quantities. We define the accessible pore size as the size of the largest sphere that rests on three closest solid atoms in such a manner that any probe particle residing in that sphere would have a non-positive solid-fluid potential energy. For each accessible pore size there is an associated accessible pore volume, giving rise to a new accessible pore size distribution (APSD). This is distinct from the classical pore size distribution commonly used in the literature, and in our definition of accessible pore size, a zero pore size is possible. It is also emphasized that the accessible quantities that we introduce here are dependent on the choice of molecular probe, which is entirely consistent with the concept of molecular sieving.  相似文献   

17.
刘江红  魏晓航  薛健 《化学通报》2019,82(3):209-213
介孔材料是一种具有较大比表面积和高度有序孔道结构的材料,而功能化介孔材料是将介孔材料改性而使其具有不同的功能。这种材料由于具有极好的吸附和催化性能而被广泛应用于环境领域中。本文总结了功能化介孔材料的制备方法,包括引入官能团、掺杂金属和酸改性;探讨分析了几种制备方法下的功能化介孔材料的特点和应用前景;重点介绍了功能化介孔材料在吸附重金属、有机污染物、染料、CO2以及催化领域的研究进展;最后展望了未来功能化介孔材料的应用前景和发展趋势,以期为功能化介孔材料的发展提供参考和指明方向。  相似文献   

18.
对3种低品质煤进行200、250和300℃下的水热提质实验。将水热提质前后的煤样进行氮吸附测试和红外光谱测定,获得其孔隙分布和含氧官能团的变化规律。结果表明,水热提质后,各煤种平均孔径、比孔容明显降低,煤中羟基、羧基减少,环化程度升高,单环芳烃结构向多环芳烃转化,煤中有机质逐渐成熟,煤阶升高。利用快速热解仪在升温速率5000℃/s、终温1000℃条件下进行实验,获得低品质煤热解大分子挥发分的析出规律。结果表明,随着反应终温的升高,各煤种热解产生的脂肪烃含量减小、芳香烃的含量升高、酸类和酚类减少、酯类变化规律不明显。  相似文献   

19.
《中国化学快报》2022,33(8):3585-3593
Far-ranging and improper uses of pharmaceuticals and personal care products (PPCPs) over the last few decades have led to severe water contamination that imposes serious effects on human beings and the ecological system. Therefore, there is an increasing demand for a highly-efficient and environmentally friendly technology for the removal of PPCPs from aqueous solutions. Adsorption technology is an appropriate technology to solve this issue. Carbon-based composites, ranging from modified activated carbon to functionalized biochar, show great potential for this purpose. This review hence elaborates on the environmental occurrences and risks of PPCPs and summarizes the recent progress in removing PPCPs from water using carbon-based adsorbents. The pore structure, relatively large specific surface area (SSA), abundant surface functional groups, highly aromatic structures and the extra excellent characteristics of the cooperative materials contribute to their outstanding adsorption performance. Furthermore, the biochar-clay material is cost effective and more efficient compared to traditional activated carbon regarding the adsorption of PPCPs. Among the emerging adsorbents, graphene and carbon nanotubes composites show superior adsorption ability. Their adsorption mechanisms, such as electrostatic interactions, hydrogen bonding, and pore filling, are discussed in details.  相似文献   

20.
Adsorption properties of amine-functionalized mesoporous silica NH2-SBA-15, zeolite-like imidazole framework ZIF-8, and amine-functionalized metal-organic polymer NH2-MIL-53 have been investigated. Non-modified mesoporous adsorbent SBA-15 has a higher sorption capacity for CO2 than microporous ZIF-8, although microporous sample is characterized by a larger surface area and the values of total pore volume are close. When amine groups are present on the surface of the adsorbents, the chemical adsorption contributes more then the physical one. The adsorption capacity increases with increasing concentration of the functional groups which, in its turn, correlates with adsorbent surface area. Among the studied samples, the best adsorption properties demonstrate amine-functionalized adsorbents, aminefunctionalized mesoporous silica NH2-SBA-15, and amine-functionalized metal-organic polymer NH2-MIL-53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号