首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《中国化学快报》2021,32(9):2865-2868
Porous organic frameworks (POFs) are excellently stable porous materials, which can be employed as host platforms to support metal nanoparticles as functional composites for various applications. Herein, a novel POF is successfully prepared via Friedel-Crafts reaction. Silver nanoparticles (Ag NPs) are embedded in the prepared POF to generate an Ag@POF composite, which not only possesses high surface area, outstanding physicochemical stability and outstretched π-conjugation skeleton, but also exhibits preferable electrochemical stability and conductivity. This composite is able to immobilize a mass of aptamer strands to fabricate an intriguing electrochemical aptasensor. Electrochemical impedance spectroscopy (EIS) is a commonly used technology to analyze the electrochemical signal variation. The Ag@POF-based biosensor shows the excellent electrochemical detection behavior through analyzing EIS. For instance theophylline as a research mode, the Ag@POF based electrochemical aptasensor reveals ultra-sensitiveness, high selectivity, remarkable stability, good repeatability and simple operability even in various real samples. Notably, this aptasensor has the sensitive detection performance with the limit of detection of 0.191 pg/mL (1.06 pmol/L) in a wide concentration range of 5.0 × 10-4 – 5.0 ng/mL (2.78 × 10-3 – 27.8 nmol/L).  相似文献   

2.
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.  相似文献   

3.
Here we demonstrate for the first time that by physically adsorbing aptamer onto conductive film assembled via alternate adsorption of graphene/polyelectrolyte and methylene blue/polyelectrolyte, a label-free electrochemical aptasensor with high sensitivity and selectivity for peptide detection is constructed. Graphene multilayer derived from layer-by-layer assembly has played significant roles in this sensing strategy: allowing accumulation of methylene blue, facilitating electron transfer and providing much more adsorption site. As compared to previous electrochemical aptasensors, the current sensor based on graphene multilayer alternated with electroactive molecule layer offers extremely high capability for sensitive detection of target without interference of environmental surrounding. This electroactive probe-confined graphene multilayer confers great flexibility to combine with differential pulse voltammetry (DPV) together. In the presence of target d entiomer of arginine vasopressin (d-VP), the binding of peptide to aptamer block the electron transfer process of MB, leading to decreased current peak of DPV. By this way, this electrochemical aptasensor based on electroactive molecule-intercalated graphene multilayer provide highly sensitive and specific detection of d-VP with the lowest detectable concentration of 1 ng mL−1 and a wide detection range from 1 to 265 ng mL−1.  相似文献   

4.
A magnetocontrolled immunosensing strategy based on flow-injection electrochemical impedance spectroscopy (EIS) was developed for the determination of carcinoembryonic antigen (CEA) in human serum. The immunosensor was fabricated by immobilizing anti-CEA on epoxysilane-modified core–shell magnetic Fe3O4/SiO2 nanoparticles. The detection principle is based on the difference between the resistances measured before and after the antigen–antibody interaction. The performance of the immunosensor and factors influencing this performance were also proposed. The resistance response depended linearly on the CEA concentration over the range 1.5–60 ng/ml, and the immunosensor gave a detection limit of 0.5 ng/ml (S/N = 3). Coefficients of variance (CVs) of <9.8% were obtained for the intra- and interassay precisions. The method was successfully applied to the analysis of CEA in human serum. The recoveries obtained by spiking CEA standards into normal serum were 87–113%. The performance of the immunosensor was compared with a commercially available CEA ELISA. Satisfactory results were obtained according to a paired t-test method (t value < t critical at the 95% confidence level). Importantly, the proposed immobilization protocol could be further developed to immobilize other antigens or biocompounds. Figure This study introduced a magnetocontrolled electrochemical immunosensing strategy based on antibody-functionalized magnetic core–shell Fe3O4/SiO2 nanoparticles for the determination of carcinoembryonic antigen in human serum  相似文献   

5.
Electrochemical impedance spectroscopy has been widely used to understand the chemistry and physics of battery systems. This review covers electrochemical impedance spectroscopy used for the interpretation of impedance data of lithium-ion batteries (LIBs) from advanced equivalent circuit models to the mathematical model, which is developed by John Newman. In addition, as a method to realize an energy-sustainable society using diagnostics based on the combination of LIBs and electrochemical impedance spectroscopy, on-board diagnostics of battery packs are achieved based on an input signal generated by a power controller in a battery management system instead of the conventionally used frequency response analyzer. The diagnostic system is applicable to energy management systems which are installed in homes, buildings, and communities, accumulating the impedance data on state of health of LIBs. Finally, a future possibility regarding the diagnostics of battery packs coupled with the machine learning of impedance data is introduced.  相似文献   

6.
Wang Z  Yang Y  Li J  Gong J  Shen G  Yu R 《Talanta》2006,69(3):686-690
A new strategy to construct amperometric immunosensor for human IgG assay based on ZnO/chitosan composite as sensing platform has been described. This material, which combined the advantages of inorganic species, ZnO and organic polymer, chitosan, can maintain biological activity well. A sequential sandwich immunoassay format was performed on the ZnO/chitosan composite supported by glass carbon electrode (GCE) using goat-anti-human IgG antibody (IgG Ab) and human IgG as a model system. Amperometry was used to determine the amount of horse-radish peroxidase (HRP) fixed on the sensor surface, which was related to the content of the desired human IgG. Assay conditions that were optimized included the amount of labeled antibody, the incubation time and temperature, the pH of the substrate solution, etc. Using hydroquinone as a mediator, amperometric detection at −150 mV (versus SCE) resulted in a detection range 2.5-500 ng mL−1, with a detection limit of 1.2 ng mL−1. The simple manipulations of the construction of ZnO/chitosan composite, as well as low-cost and broad linear range, are the main features of the proposed immunosensing method.  相似文献   

7.
This paper demonstrates the effectiveness of using the redox couple to investigate DNA monolayers, and compares the potential advantages of this system to the standard redox couple. B-DNA monolayers were converted to M-DNA by incubation in buffer containing 0.4 mM Zn2+ at pH 8.6 and studied by cyclic voltammetry (CV), impedance spectroscopy (IS) and chronoamperometry (CA) with . Compared to B-DNA, M-DNA showed significant changes in CV, IS and CA spectra. However, only small changes were observed when the monolayers were incubated in Mg2+ at pH 8.6 or in Zn2+ at pH 6.0. The heterorgeneous electron-transfer rate (kET) between the redox probe and the surface of a bare gold electrode was determined to be 5.7 × 10−3 cm/s. For a B-DNA modified electrode, the kET through the monolayer was too slow to be measured. However, under M-DNA conditions, a kET of 1.5 × 10−3 cm/s was reached. As well, the percent change in resistance to charge transfer, measured by IS, was used to illustrate the dependence of M-DNA formation on pH. This result is consistent with Zn2+ ions replacing the imino protons on thymine and guanine residues. The redox couple was also effective in differentiating between single-stranded and double-stranded DNA during de-hybridization and rehybridization experiments.  相似文献   

8.
The electrochemical detection of carbaryl at low potentials, in order to avoid matrix interferences, is an important challenge. This study describes the development, electrochemical characterization and utilization of a glassy carbon (GC) electrode modified with multi-wall carbon nanotubes (MWCNT) plus cobalt phthalocyanine (CoPc) for the quantitative determination of carbaryl in natural waters. The surface morphology was examined by scanning electron microscopy, enhanced sensitivity was observed with respect to bare glassy carbon and electrocatalytic effects reduced the oxidation potential to +0.80 V vs. SCE in acetate buffer solution at pH 4.0. Electrochemical impedance spectroscopy was used to estimate the rate constant of the oxidation process and square-wave voltammetry to investigate the effect of electrolyte pH. Square-wave voltammetry in acetate buffer solution at pH 4.0, allowed the development of a method to determine carbaryl, without any previous step of extraction, clean-up, or derivatization, in the range of 0.33-6.61 μmol L−1, with a detection limit of 5.46 ± 0.02 nmol L−1 (1.09 ± 0.02 μg L−1) in water. Natural water samples spiked with carbaryl and without any purification step were successfully analyzed by the standard addition method using the GC/MWCNT/CoPc film electrode.  相似文献   

9.
Takahashi K  Koitabashi M  Kusu F 《Talanta》2005,65(5):1120-1125
A new spectroelectrochemical cell for slab optical waveguide (SOWG) spectroscopy was developed in order to observe in situ an electrode/electrolyte interface for bulk electrolysis. The new SOWG spectroelectrochemical cell has been evaluated by simultaneous electrochemical-absorption experiments of methylene blue (MB) using cyclic voltammetry (CV) and SOWG spectrometry. CV was performed in the SOWG spectroelectrochemical cell using indium tin oxide (ITO) coated glass as the working electrode, platinum wire as the counter electrode and a silver/silver chloride electrode (Ag/AgCl) as the reference electrode. Based on the CV and SOWG spectrometric data, it was found that the SOWG spectra showed the MB spectra on the electrode surface selectively and that SOWG with the cell would be useful as a tool for in situ study of an electrode/electrolyte interface. Using this cell, the effects of the supporting electrolytes, NaNO3, KNO3, CH3COONa, and CH3COOK on the absorbance of MB were examined at the potential of +0.8 V versus Ag/AgCl. The decrease in MB absorbance by nitrate ions was greater than that of acetate ions. Therefore the competitive adsorption of nitrate ions was stronger than that of acetate ions. Thus, the decrease in absorbance of MB in the presence of anions demonstrates the competitive adsorption of anions. These results show that the extent of specific adsorption of electrolytes was observed by measuring the SOWG absorbance intensity of MB.  相似文献   

10.
In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR’s ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H2O2. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM–50 nM with a detection limit of 33 fM (defined as S/N = 3) for TB.  相似文献   

11.
LiMn2O4 powder for lithium-ion batteries was prepared by a precipitation method, and the effects of calcination temperature on the physical properties and electrochemical performance of the samples were investigated by various methods. The results of X-ray diffraction (XRD) showed that the lattice parameter (a) and the unit cell volume (v) decrease with the increasing calcination temperature, and the LiMn2O4 sample calcined at 750°C has smaller particle size and higher crystallinity than other samples. The results of the electrochemical experiments showed that the sample calcined at 750°C has larger peak currents, higher initial capacity, and better cycling capability, because of its lower charge-transfer resistance and larger diffusion coefficient of Li+ ions than those of other samples.  相似文献   

12.
A gold millielectrode (GME) functionalized with a mixed (16-MHA + EG3SH) self-assembled monolayer (SAM) was used to fabricate an indirect enzyme-linked immunosorbent assay (ELISA) immunosensor for the sensitive detection of prostate-specific antigen (PSA), a prostate cancer (PCa) biomarker, in human serum samples. To address and minimize the issue of non-specific protein adsorption, an organic matrix (amine-PEG3-biotin/avidin) was assembled on the previously functionalized electrode surface to build up an ordered and hierarchically organized interfacial supramolecular architecture: Au/16-MHA/EG3SH/amine-PEG3-biotin/avidin. The electrode was then exposed to serum samples at different concentrations of a sandwich-type immunocomplex molecule (BtnAb-AgPSA-HRPAb), and its interfacial properties were characterized using electrochemical impedance spectroscopy (EIS). Calibration curves for polarization resistance (RP) and capacitance (1/C) vs. total and free PSA concentrations were obtained and their analytical quality parameters were determined. This approach was compared with results obtained from a commercially available ELISA immunosensor. The results obtained in this work showed that the proposed immunosensor can be successfully applied to analyze serum samples of patients representative of the Mexican population.  相似文献   

13.
A tin disulfide and multi-walled carbon nanotube (SnS2/CNTs) electrochemical sensor was constructed for the sensitive and selective determination of rutin in plants. Tin disulfide nanoflowers with various particle sizes were prepared by controlling the reaction time and composited with multi-walled CNTs. The morphology, crystal structure, and chemical composition of these SnS2/CNTs composites were characterized using XRD, XPS, and SEM-EDS. Results illustrated that the SnS2/CNTs had a large specific surface area, good conductivity, and remarkable electrocatalytic performance. The pH of the buffer solution, the scanning rate, and the amount of modified material were also optimized for the rapid detection of rutin. A 2-electron-2-proton mechanism, involving a few rapid and consecutive stages, was speculated to occur during rutin oxidation, based on the observed slope of -53 mV/pH. There was an appreciable linear relationship between the reductive peak current from DPV and the rutin concentration, ranging from 0.005-0.05 µmol/L and 0.1-6 µmol/L, with a detection limit of 0.22 nmol/L (S/N = 3). The sensor also demonstrated good selectivity, excellent sensitivity, and reproducibility when analyzing rutin in real plant samples, with satisfactory recovery, and was also highly consistent with results of HPLC, and thus could be used to evaluate the medicinal value of natural vegetation.  相似文献   

14.
A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (ΓFAD) was ca. 5.11 × 10−10 mol cm−2. The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM−1 cm−2, a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na+, Mg2+, Ca2+, Zn2+, Fe2+, Cl, NO3, I, SO42− and SO32−, with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.  相似文献   

15.
The core-shell structured Au@Bi2S3 nanorods have been prepared through direct in-situ growth of Bi2S3 at the surface of pre-synthesized gold nanorods.The product was characterized by X-ray diffraction,transmission electron microscopy and energy-dispersive X-ray spectroscopy.Then the obtained Au@Bi2S3 nanorods were coated onto glassy carbon electrode to act as a scaffold for fabrication of electrochemical DNA biosensor on the basis of the coordination of-NH2 modified on 5’-end of probe DNA and Au@Bi2S3.Electrochemical characterization assays demonstrate that the Au@Bi2S3 nanorods behave as an excellent electronic transport channel to promote the electron transfer kinetics and increase the effective surface area by their nanosize effect.The hybridization experiments reveal that the Au@Bi2S3 matrix-based DNA biosensor is capable of recognizing complementary DNA over a wide concentration ranging from 10 fmol/L to 1 nmol/L.The limit of detection was estimated to be 2 fmol/L(S/N=3).The biosensor also presents remarkable selectivity to distinguish fully complementa ry sequences from basemismatched and non-complementary ones,showing great promising in practical application.  相似文献   

16.
LiTi2(PO4)3/C 复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
采用聚乙烯醇(PVA)辅助溶胶-凝胶法合成了具有Na+超离子导体(NASICON)结构的LiTi2(PO4)3/C复合材料.运用X射线衍射(XRD)、扫描电子显微镜(SEM)、充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等对其结构形貌和电化学性能进行表征.实验结果表明:合成的LiTi2(PO4)3/C具有良好的NASICON结构,首次放电容量为144mAh·g-1.电化学阻抗谱测试结果显示,LiTi2(PO4)3/C复合材料电极在首次嵌锂过程中分别出现了代表固体电解质相界面(SEI)膜及接触阻抗、电荷传递阻抗和相变阻抗的圆弧,并详细分析了它们的变化规律.计算了Li+在LiTi2(PO4)3中嵌入/脱出时的扩散系数,分别为2.40×10-5和1.07×10-5cm2·s-1.  相似文献   

17.
An effective electrochemical sensor for the rapid and simultaneous determination of tramadol and acetaminophen based on carbon paste electrode (CPE) modified with NiFe2O4/graphene nanoparticles was developed. The structures of the synthesized NiFe2O4/graphene nanocomposite and the electrode composition were confirmed by X-ray diffraction (XRD) spectrometry, Fourier transform infrared (FT-IR) spectrometry and scanning electron microscopy (SEM). The peak currents of square wave voltammetry of tramadol and acetaminophen increased linearly with their concentration in the range of 0.01–9 μmol L−1. The detection limit for their determination was found to be 0.0036 and 0.0030 μmol L−1, respectively. The results show that the combination of graphene and NiFe2O4 nanoparticles causes a dramatic enhancement in the sensitivity of the sensor. The fabricated sensor exhibited high sensitivity and good stability, and would be valuable for the clinical assay of tramadol and acetaminophen.  相似文献   

18.
PtSn_2-SnO_2/C nanocatalyst was prepared by co-reduction of Pt and Sn precursor at ca,15℃.The formation of PtSn_2-SnO_2 nanoparticle was determined by XRD,TEM and XPS characterization.This PtSn_2-SnO_2/C nanocatalyst exhibits stronger resistance to CO poisoning and effectively improves methanol electro-catalytic effect,up to 3 times than the commercial Pt/C catalyst.  相似文献   

19.
Gold nanoparticle (Au‐NPs)‐Titanium oxide nanotube (TiO2‐NTs) electrodes are prepared by using galvanic deposition of gold nanoparticles on TiO2‐NTs electrodes as support. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy results indicate that nanotubular TiO2 layers consist of individual tubes of about 60–90 nm diameters and gold nanoparticles are well‐dispersed on the surface of TiO2‐NTs support. The electrooxidation of hydroquinone of Au‐NPs/TiO2‐NTs electrodes is investigated by different electrochemical methods. Au‐NPs/TiO2‐NTs electrode can be used repeatedly and exhibits stable electrocatalytic activity for the hydroquinone oxidation. Also, determination of hydroquinone in skin cream using this electrode was evaluated. Results were found to be satisfactory and no matrix effects are observed during the determination of hydroquinone content of the “skin cream” samples.  相似文献   

20.
This paper reports a micro-planar Ag/AgCl quasi-reference electrode (QRE) with long-term stability which is characterized by both long-term potential stability and practical immunity to interference species, and which has been applied for use with an amperometric glucose sensor for plasma glucose. For fabrication, we coated a silver/silver chloride (Ag/AgCl) electrode first with γ-aminopropyltriethoxysilane (γ-APTES) and then with perfluorocarbon polymer (PFCP). Tests demonstrate the new electrode’s ability to remain stable over an 82-day period in 150 mM KCl, and also show its imperviousness to the effects of interference species (1 mM KI and 1 mM KBr), pH, and serum. Furthermore, in tests for glucose concentrations in plasma samples, a good correlation coefficient, 0.954 (n=30, Y=1.02X+0.20), was demonstrated between results obtained with a clinical analyzer and those obtained with an amperometric glucose sensor that used the developed Ag/AgCl QRE, showing that the Ag/AgCl QRE functions well as a reference electrode for plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号