首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this article, a variety of solitary wave solutions are found for some nonlinear equations. In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into the corresponding partial differential equation and the rational exp (?φ(η))-expansion method is implemented to find exact solutions of nonlinear equation. We find hyperbolic, trigonometric, rational and exponential function solutions using the above equation. The results of various studies show that the suggested method is very effective and can be used as an alternative for finding exact solutions of nonlinear equations in mathematical physics. A comparative study with the other methods gives validity to the technique and shows that the method provides additional solutions. Graphical representations along with the numerical data reinforce the efficacy of the procedure used. The specified idea is very effective, pragmatic for partial differential equations of fractional order and could be protracted to other physical phenomena.  相似文献   

2.
3.
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg–de Vries–Burgers (mKdV–Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV–Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.  相似文献   

4.
Based on the similarity transformation connected the nonautonomous nonlinear Schrödinger equation with the autonomous nonlinear Schrödinger equation, we firstly derive self-similar rogue wave solutions (rational solutions) for the nonautonomous nonlinear system with a linear potential. Then, we investigate the controllable behaviors of one-rogue wave, two-rogue wave and rogue wave triplets in a soliton control system. Our results demonstrate that the propagation behaviors of rogue waves, including postpone, sustainment, recurrence and annihilation, can be manipulated by choosing the relation between the maximum value of the effective propagation distance Z m and the parameter Z 0. Moreover, the excitation time of controllable rogue waves is decided by the parameter T 0.  相似文献   

5.
In this research, we apply two different techniques on nonlinear complex fractional nonlinear Schrödinger equation which is a very important model in fractional quantum mechanics. Nonlinear Schrödinger equation is one of the basic models in fibre optics and many other branches of science. We use the conformable fractional derivative to transfer the nonlinear real integer-order nonlinear Schrödinger equation to nonlinear complex fractional nonlinear Schrödinger equation. We apply new auxiliary equation method and novel \(\left( {G'}/{G}\right) \)-expansion method on nonlinear complex fractional Schrödinger equation to obtain new optical forms of solitary travelling wave solutions. We find many new optical solitary travelling wave solutions for this model. These solutions are obtained precisely and efficiency of the method can be demonstrated.  相似文献   

6.
This paper deals with exact soliton solutions of the nonlinear long–short wave interaction system, utilizing two analytical methods. The system of coupled long–short wave interaction equations is investigated with the help of two analytical methods, namely, the generalized \(\tan (\phi /2)\)-expansion method and He’s semi-inverse variational method. Moreover, in this paper we generalize two aforementioned methods which give new soliton wave solutions. As a consequence, solutions are including solitons, kink, periodic and rational solutions. Moreover, dark, bright and singular solition solutions of the coupled long–short wave interaction equations have been found. All solutions have been verified back into its corresponding equation with the aid of maple package program. We depicted the physical explanation of the extracted solutions with the free choice of the different parameters by plotting some 3D and 2D illustrations. Finally, we believe that the executed methods are robust and efficient than other methods and the obtained solutions in this paper can help us to understand the soliton waves in the fields of physics and mechanics.  相似文献   

7.
In Minkowski flat space-time, it is perceived that time inversion is unitary rather than antiunitary, with energy being a time vector changing sign under time inversion. The Dirac equation, in the case of electromagnetic interaction, is not invariant under unitary time inversion, giving rise to a Klein paradox. To render unitary time inversion invariance, a nonlinear wave equation is constructed, in which the Klein paradox disappears. In the case of Coulomb interaction, the revised nonlinear equation can be linearized to give energy solutions for Hydrogen-like ions without singularity when nuclear number Z>137, showing a reversed energy order pending for experimental tests such as Zeeman effects. In non-relativistic limit, this nonlinear equation reduces to nonlinear Schrödinger equation with soliton-like solutions. Moreover, particle conjugation and electron-proton scattering with a nonsingular current-potential interaction are discussed. Finally the explicit form of gauge function is found, the uniqueness of Lorentz gauge is proven and the Lagrangian density of quantum electrodynamics (QED) is revised as well. The implementation of unitary time inversion leads to the ultimate derivation of nonlinear QED.  相似文献   

8.
In this paper, we find exact solutions of some nonlinear evolution equations by using generalized tanh–coth method. Three nonlinear models of physical significance, i.e. the Cahn–Hilliard equation, the Allen–Cahn equation and the steady-state equation with a cubic nonlinearity are considered and their exact solutions are obtained. From the general solutions, other well-known results are also derived. Also in this paper, we shall compare the generalized tanh–coth method and generalized (G /G )-expansion method to solve partial differential equations (PDEs) and ordinary differential equations (ODEs). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important roles in engineering fields. The generalized tanh–coth method was used to construct periodic wave and solitary wave solutions of nonlinear evolution equations. This method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that the generalized tanh–coth method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear problems.  相似文献   

9.
《Physics letters. A》2019,383(36):126028
The theory of bifurcations for dynamical system is employed to construct new exact solutions of the generalized nonlinear Schrödinger equation. Firstly, the generalized nonlinear Schrödinger equation was converted into ordinary differential equation system by using traveling wave transform. Then, the system's Hamiltonian, orbits phases diagrams are found. Finally, six families of solutions are constructed by integrating along difference orbits, which consist of Jacobi elliptic function solutions, hyperbolic function solutions, trigonometric function solutions, solitary wave solutions, breaking wave solutions, and kink wave solutions.  相似文献   

10.
The global existence of smooth solutions to the equations of nonlinear hyperbolic system of 2nd order with third order viscosity is shown for small and smooth initial data in a bounded domain ofn-dimensional Euclidean space with smooth boundary. Dirichlet boundary condition is studied and the asymptotic behaviour of exponential decay type of solutions ast tending to is described. Time periodic solutions are also studied. As an application of our main theorem, nonlinear viscoelasticity, strongly damped nonlinear wave equation and acoustic wave equation in viscous conducting fluid are treated.  相似文献   

11.
We consider the Boyd-Kadomstev system which is in particular a model for the Brillouin backscattering in laser-plasma interaction. It couples the propagation of two laser beams, the incoming and the backscattered waves, with an ion acoustic wave which propagates at a much slower speed. The ratio ${\varepsilon}$ between the plasma sound velocity and the (group) velocity of light is small, with typical value of order 10?3. In this paper, we make a rigorous analysis of the behavior of solutions as ${\varepsilon \to 0}$ . This problem can be cast in the general framework of fast singular limits for hyperbolic systems. The main new point which is addressed in our analysis is that the singular relaxation term present in the equation is a nonlinear first order system.  相似文献   

12.
13.
In this Letter, to further understand the role of nonlinear dispersion in coupled nonlinear wave systems in both real and complex fields, we study the coupled Klein–Gordon equations with nonlinear dispersion in real field (called CKG(m,n,k)CKG(m,n,k) equation) and (2+1)(2+1)-dimensional generalization of coupled nonlinear Schrödinger equation with nonlinear dispersion in complex field (called GCNLS(m,n,k)GCNLS(m,n,k) equation) via some transformations. As a consequence, some types of solutions are obtained, which contain compactons, solitary pattern solutions, envelope compacton solutions, envelope solitary pattern solutions, solitary wave solutions and rational solutions.  相似文献   

14.
《Physics letters. A》2006,355(1):32-38
Based on computerized symbolic computation, a complex hyperbolic-function method is proposed for the general nonlinear equations of mathematical physics in a unified way. In this method, we assume that exact solutions for a given general nonlinear equations be the superposition of different powers of the sech-function, tanh-function and/or their combinations. After finishing some direct calculations, we can finally obtain the exact solutions expressed by the complex hyperbolic function. The characteristic feature of this method is that we can derive exact solutions to the general nonlinear equations directly without transformation. Some illustrative equations, such as the (1+1)-dimensional coupled Schrödinger–KdV equation, (2+1)-dimensional Davey–Stewartson equation and Hirota–Maccari equation, are investigated by this means and new exact solutions are found.  相似文献   

15.
Under investigation in this paper is a higher-order nonlinear self-dual network equation, which may simulate the wave propagation in a ladder type electric circuit. By means of the N-fold Darboux transformation and symbolic computation, the N-soliton solutions in determinant form are obtained. Based on the asymptotic and graphic analysis, the elastic interaction phenomena between/among two-, three- and four-soliton solutions are discussed, and some important physical quantities are accurately analyzed. Numerical simulations are used to explore the dynamical stability of one- and two-soliton solutions. Results might be helpful for understanding the propagation and interaction properties of electrical signals in a ladder type nonlinear self-dual network.  相似文献   

16.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

17.
The present study implements the unified method to the conformable time fractional non linear Schro¨dinger equation with perturbation terms. Reduction of the governing equation to a simpler ODE by compatible complex transform is the first step of the procedure. The predicted solutions in finite series forms of various functions satisfying some particular ODEs are substituted into the reduced form of the governing equation. The algebra is resulted in forming the explicit exact solutions in optical solitary, periodic, elliptic and soliton wave forms represented in polynomial or rational functions.  相似文献   

18.
尚亚东  黄勇 《物理学报》2013,62(7):70203-070203
理论上考察了具有耗散的非线性LC电路中的行波. 借助于作者最近发展的精确求解非线性偏微分方程的扩展的双曲函数方法解析地研究了模拟非线性电路中冲击波的四阶耗散非线性波动方程. 一致地获得了丰富的显式精确解析行波解, 包括精确冲击波解和奇异的行波解, 和三角函数有理形式的周期波解. 关键词: LC电路')" href="#">非线性LC电路 非线性耗散波动方程 冲击波 周期波  相似文献   

19.
A improvement of the expansion methods, namely, the improved \(\tan (\phi (\xi )/2)\)-expansion method for solving the sixth-order thin-film equation is proposed. As a result, many new and more general exact traveling wave solutions are obtained including singular kink-type solutions. We obtained the further solutions comparing with other methods as Flitton and King (Eur J Appl Math 15:713–754, 2004) and Taha et al. (J King Saud Univ Sci 26:75–78, 2014). Recently this method is developed for searching exact traveling wave solutions of nonlinear partial differential equations. Abundant exact traveling wave solutions including kink and rational solutions have been found. These solutions might play important role in engineering and physics fields. Also the results demonstrate that the introduced method is powerful tools for solving the nonlinear partial differential equations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号