首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the enhancement of gas sensing response due to addition of tin into Cr2O3 has been reported. Sn-doped Cr2O3 nanoparticles have been prepared by a co-precipitation method and characterised by X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray analysis. X-ray diffraction studies revealed the substitution of Cr3+ ions by Sn4+ ions. Field emission scanning electron microscopy images exhibited presence of clusters and agglomerates on the surface. The concentration of tin, used as dopant, was varied from 1 to 5?wt.% and its effect on gas sensing response has been studied. Synthesised powders were applied as thick film onto alumina substrate and tested for ethanol sensing at different operating temperatures and all the sensors gave an optimum response at 250?°C. The activation energy of conduction for all the samples was estimated using Arrhenius plots and it was observed that the sample doped with 4?wt.% Sn possesses minimum activation energy, and interestingly this sample gave the best sensing response in the lot.  相似文献   

2.
X-ray photoelectron spectra of 30- and 100-nm nanolayers, recorded in the energy range 0–35 eV, show a strong dependence of both the distribution of the density of Sn 5s, p+ O2 p valence states and the change in the intensity ratio for the Sn 4d and O 2s subvalence states on the annealing temperature and nanolayer thickness. In the nanolayers fabricated at an annealing temperature of 450°C, an unusually strong band of O 2s states of unbound oxygen is observed, which is retained for nanolayers doped with palladium and disappears for nanolayers doped with gold and silver.  相似文献   

3.
Mixed oxides composed of Zn-Sn, Ti-Sn and V-Sn were prepared by a co-precipitation method and evaluated as catalysts for methanol oxidation in an ambient fixed-bed reactor. Surface analysis by X-ray photoelectron spectroscopy (XPS) revealed an electronic interaction between dopant and Sn atoms in the oxide structure and showed the formation of surface states associated with the dopants. Oxygen vacancies were present on the Zn-doped oxide, and the oxidation of methanol to carbon oxides was favored. The Ti-doped oxide exhibited a favorable selectivity to dimethyl ether, related to the oxygen anions near Ti centers. Vanadium dopants not only dramatically increased the catalytic activity but also promoted the partial oxidation of methanol to formaldehyde. Results demonstrate that the bridging dopant-O-Sn bond acts as active sites and influences product distribution.  相似文献   

4.
5.
6.
Colloidal CdSe nanoparticles (NPs), passivated with CdS and ZnS, were characterized by resonant Raman scattering and photoluminescence (PL). The effect of the passivating shell, its volume and formation procedure on optical and vibrational spectra is discussed. Analyzing the Raman peaks due to optical phonons inside the core and those related to the core-shell interface allows some understanding of the relation between the core-shell structure and its PL properties to be achieved. In particular, a compositional intermixing at the core/shell interface of the NPs was deduced from the Raman spectra, which can noticeably affect their PL intensity.  相似文献   

7.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

8.
A detailed study of the surface passivation process in superparamagnetic cobalt ferrite nanoparticles has been carried out using micro Raman spectroscopy. In addition to Raman spectroscopy, X-ray diffraction and atomic absorption spectroscopy were also used to investigate passivated and non-passivated samples. The data were discussed in terms of changes in the structural characteristics of the samples considering the introduction of Fe ions during the passivation. We found an improvement of the nanoparticle crystallinity due to the passivation process.  相似文献   

9.
Raman spectroscopy is used to investigate magnetite nanoparticles dispersed in two types of β-cyclodextrin suspensions. An approach is presented for characterization of the magnetic core in liquid surrounding at room temperature and atmospheric pressure. The effect of elevating laser power on the structural stability and chemical composition of magnetite in the ferrofluids is discussed. The data are compared with data from dry by-products from the fluids. Powder samples undergo total phase transition from magnetite to hematite at laser power of 1.95 mW. The same nanoparticles in the fluid undergo transformation at 9 mW, but no hematite positions appear throughout that investigation. The Raman spectra revealed that the main phase of the magnetic core in the fluids is magnetite. That is indicated by a strong and non-diminishing in intensity peak at 670 cm−1. A second phase is present at the nanoparticle’s surface with Raman spectroscopy unveiling maghemite-like and small fractions of goethite-like structures. The Fourier transform infrared spectroscopy investigations confirm deviations in the surface structure and also point to the fact that the oxidation process starts at an early stage after formation of the nanoparticles. The analyses of the infrared data also show that β-cyclodextrin molecules retain their cyclic character and the coating does not affect the oxidation process once the particles are evicted from the fluids. A Mössbauer spectroscopy measurement on a ferrofluidic sample is also presented.  相似文献   

10.
We present recent experimental and theoretical advances in the selective nanovolume Raman spectroscopy of nanoparticles. Our setup is based on previously available microspectrometry imaging systems for working in the near-field domain combined with a stigmatic solid immersion lens. By spectrally selecting nanoparticles, we registered the spatial distribution of the emitted photons in x, y, z vectors to determine the position in the near-field domain. This near-field capability is applied to resolve local variations unambiguously in the Raman spectra for nanoparticles with unity throughput.  相似文献   

11.
We studied the experimental Raman spectra of various commercial silica nanoparticles of average diameter from 7 to 40 nm and specific surface from 50 to 380 m2/g. We found that the peculiarities of the particles Raman spectra systematically depend on their specific surface. In detail, the peak position of the R band at about 440 cm−1 shifts towards high wavenumbers following an almost linear dependence on the specific surface. Similarly, the amplitudes of the D1 and D2 bands, at about 495 and 605 cm−1, respectively, increase linearly with the same quantity. Our results are interpreted in the frame of the shell model for the nanoparticles clarifying that the network of the core of the nanoparticles is comparable to the bulk silica materials, whereas the surface shell has a ring statistic shifted to the low member rings and features an higher density. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Indium oxide, tin oxide and indium tin oxide nanowires have been grown by vapor deposition on Si and quartz substrates. Under the growth conditions used, pure SiOx nanowires, a mixture of SiOx and indium oxide, tin oxide or indium tin oxide nanostructures, or pure indium oxide, tin oxide or indium tin oxide nanostructures could be obtained at different substrate temperatures. The growth mechanism of the obtained nanostructures at different substrate temperatures is discussed. Optical and electrical properties of the deposited pure indium oxide, tin oxide or indium tin oxide nanostructures have been measured, and low sheet resistances on quartz substrates have been obtained for indium oxide and indium tin oxide nanostructures.  相似文献   

13.
The size effects on SrTiO3 nanoparticles have been investigated by means of Raman spectroscopy with changing the grain size in the range 10–80 nm. The intensities of the first-order polar TO2 and TO4 modes increase as the grain size reduces, suggesting the enhanced interaction of the surface-defect dipoles on the grain boundary. By contrast, the intensities for the first-order nonpolar TO3 mode decrease with reducing the grain size. Further we have found that the Raman frequencies of the vibration modes are very sensitive to the variation of the grain size. The softening of the TO2 and TO3 modes with decreasing the grain size indicates the increase of the Ti–O bond length, which is consistent with the lattice expansion investigated by XRD. We have ascribed the size effects to the negative pressure effects due to the enhanced interaction of the surface-defect dipoles.  相似文献   

14.
Antimony-doped tin oxide (ATO) nanostructures were prepared using chemical precipitation technique starting from SnCl2, SbCl3 as precursor compounds. The antimony composition was varied from 5 to 20 wt%. The lower resistance was observed at composition of Sn:95 and Sb:05, when compared with undoped and higher doping concentration of antimony. The average crystalline size of undoped and doped tin oxide was calculated from the X-ray diffraction (XRD) pattern and found to be in the range of 30-11 nm and it was further confirmed from the transmission electron microscopy (TEM) studies. The scanning electron microscopy (SEM) analysis showed that the nanoparticles agglomerates forming spherical-shaped particles of few hundreds nanometers. The samples were further analyzed by energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrical resistance measurements.  相似文献   

15.
Thin films of undoped and chromium (Cr)-doped zinc oxide (ZnO) were synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-axis oriented phase with a dominant (0 0 2) peak appeared at a Bragg angle of around 34.13 °, which was lower than that of the standard reference of ZnO powder (34.42 °). The peak shifted to a slightly higher angle with Cr doping. The operating temperature of the ZnO gas sensor was around 350 °C, which shifted to around 250 °C with Cr-doping. The response of the sensor to oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Impedance spectroscopy analysis showed that the resistance due to grain boundaries significantly contributed to the characteristics of the gas sensor.  相似文献   

16.
Results of the Raman spectroscopy analysis of a new composite material based on a thin polycrystalline LiF film containing gold nanoparticles are presented. The formation of spherical gold nanoparticles in the film has been confirmed by the X-ray structural analysis and observation of the optical plasmon resonance absorption spectrum with a maximum at 534 nm. The obtained composite layers have been subjected to annealing by ruby laser (λ = 694 nm) in the spectral region on a descending long-wavelength wing of the plasmon absorption band of gold nanoparticles. Raman spectroscopy has been applied for the first time to the investigation of the modification of the shape of gold nanoparticles in LiF during laser annealing. The experimental Raman spectra are compared with calculated modes of in-phase bending vibrations generated in gold nanoparticles.  相似文献   

17.
Chromate (CrVI) has emerged as a widespread environmental contaminant found in groundwater and surface water, and there is a great need for rapid detection and monitoring of this contaminant. Normal Raman scattering (NRS) spectroscopy with a detection limit of CrVI at concentrations of 0.2 g/L was attached. And surface-enhanced Raman scattering (SERS) spectroscopy technique was found to be capable of detecting CrVI at concentrations as low as 2.5 mg/L using poly(diallyldimethylammonium) chloride modified gold nanoparticles (PDDA-AuNPs) as a substrate. The SERS substrate was successfully fabricated by combining the selfassembly technique with a heat-treatment-based strategy using poly(diallyldimethylammonium) chloride (PDDA) as the reducing and stabilizing agents. With the 520 cm?1 band of silicon as internal standard, band intensity ratios of CrVI to silicon, that is I 902/I 520, were found to have a quantitative relationship with a large concentration range of CrVI from 0.2 to 20.0 g/L for NRS (R 2 = 0.994) and from 2.5 to 25.0 mg/L for SERS (R 2 = 0.980), respectively. Besides, the SERS methodology was reproducible, and susceptible to the interference of pH value. The optimum pH for CrVI detection by SERS was 3.38. The application of NRS and SERS showed high practical potential for rapid screening and routine analysis of CrVI in environmental samples.  相似文献   

18.
Enhancement of the UV photoluminescence emission of sol–gel synthesized tin oxide nanoparticles is achieved by a combination of thermal annealing and Co doping. The UV as well as the defect-related visible photoluminescence are correlated to the structural characteristics and surface Sn(OH)2 content. The nanoparticle structure, size, crystallinity, and Sn(OH)2 content are monitored by a combination of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. In the undoped powders, a suitable annealing leads to a significant UV luminescence at around 365 nm. After doping with Co and annealing, the UV emission is further enhanced. The improvement in the UV emission intensity following annealing and Co doping of SnO2 is demonstrated to be due to a reduction in the hydroxyl content. The defect-related broad visible photoluminescence (~400–650 nm) can be deconvoluted into three bands at around 440 nm (blue), 510 nm (green), and 600 nm (orange). The green emission is related to Sn(OH)2 determined by Raman spectroscopy. The blue and orange emissions are attributed to oxygen vacancies.  相似文献   

19.
ZnO nanostructures have attracted great attention for possible applications in optoelectronic and spintronic devices. The electrical resistivity because of carriers can be improved by the introduction of Li ions, as Li is a possible dopant for achieving p‐type ZnO. We have carried out a comprehensive micro‐Raman scattering study of the phonons in 1% Li‐ and undoped ZnO needle crystals grown and annealed at 1073 K for 1 and 2 h under oxygen environment. Phonon mode of doped and undoped ZnO does not show any measurable shift for the doping concentration of 1%. As line width is related to point defect density, we find for both Li‐ and undoped ZnO crystals the crystallinity is improving towards the tip of the needle crystals. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Synthesis and characterization of ITO nanoparticles were investigated in the present study. To synthesize the ITO nanoparticles flame spray pyrolysis was introduced. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The crystalline ITO nanoparticles were synthesized, and their average primary particle diameters ranged from 11 to 20 nm. ITO thin films were prepared with a sol consisted of the ITO nanoparticles and a polymer binder. Effect of average particle diameter of the ITO nanoparticles on the transparency and the surface resistance of the ITO thin films were measured. As the average particle diameter increased, the transparency and the surface resistance decreased from 92 to 83% and from 1.0 × 104 to 0.8 × 104Ω/□, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号