首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil radon depth dependence   总被引:4,自引:0,他引:4  
The knowledge of the soil radon levels is important for the planning and construction of new buildings in order to estimate the radon risk and to classify the ground for construction purposes.

The purpose of this investigation was to study in situ the radon levels at various depths 0–2 m in terrain where the geology is comparatively uniform. The data from the measurements was fitted to simple functions in order to facilitate future extrapolations of radon levels from various depths to 1 m at measurements anywhere.

The plastic film Kodak LR 115 was used as the detector of the radon levels at four different depths in the interval 0–2 m. The measurements were made along a 2200 m long profile at 16 different points.  相似文献   


2.
Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m−3. Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results.  相似文献   

3.
Plastic film is a useful detector of radon gas. The method of detection of the gas is used for several decades to measure radon concentrations both indoors and in soil. Experiences from radon measurements in Sweden indoors, in soil and in water using the plastic film Kodak LR 115-II are discussed in this report. Some examples are given from various projects. One example is taken from a large scale mapping of indoor radon levels in houses, where the building material is the main source of radon. In anotther example the measurements from a large scale soil radon mapping are discussed. The use of the plastic film for measurements of radon levels in water is also discussed. All the investigations are made in order to give the authorities concerned information of the radon situation and to study the connection between high indoor radon levels and various types of cancers.  相似文献   

4.
An experimental study has been carried out in an inhabited single-family house. Radon concentration in the different rooms of the house and in its garden soil has been measured with Nuclear Track Detectors. No high differences of radon concentration have been observed between the different rooms of the house, so that the proximity of the room level to the soil seems not to affect the radon concentration. The annual radon concentration obtained indoors and in the soil has been respectively 35 Bq m−3 and 24 kBq m−3. Since radon generation in the source, entry into indoor air and accumulation indoors depend on several parameters, the effect of a specific parameter on indoor radon concentration is difficult to explain from the radon measurements only. The RAGENA (RAdon Generation, ENtry and Accumulation indoors) model has been adapted to the room in the basement of the house. The mean radon concentration values obtained with the model are compared to experimental results derived from measurements using Nuclear Track Detectors. The use of the model, together with the experimental study, has allowed characterising radon sources, levels and entry mechanisms in the house. The concrete walls have been found to be the most relevant radon source, while the contribution of the soil is negligible in this case. The indoor radon level is given by the balance of the permanent exhalation from concrete and the removal due to ventilation. The indoor radon levels are close to the average value for the Barcelona area which, in turn, is close to the world averaged value.  相似文献   

5.
Spatial and temporal variations of radon concentration in soil air   总被引:3,自引:0,他引:3  
The spatial and temporal variability of the soil gas radon concentration in typical soils is studied. The results obtained will be further used to predict indoor radon levels. To this end, 50 measuring points along geologic sections with known physicogeological parameters of soils were chosen. The soil gas radon concentration was measured with SSNTDs (Type III-b) at a depth of 70 cm from June to October, 2000. The radon exposure time was 72–96 h. The average radon concentration in the soil pore air for an urban area was 11 kBqm−3 (1.7–24 kBqm−3). Small-scale spatial variations in the concentration were found to lie within a narrower range. The effect of meteorological conditions on the soil gas radon concentration was investigated by performing 8 series of measurements at 5 closely spaced points in September–October, 2000. A significant correlation was found between the soil radon concentration and atmospheric pressure (K=−0.86), ambient temperature (K=0.75), and soil temperature (K=0.75).  相似文献   

6.
LR-115 plastic track detectors have been used for the measurement of radon exhalation rate and radium concentration in soil samples collected from some villages of Kangra district, Himachal Pradesh, India. Uranium concentration has also been determined in these soil samples using fission track technique. Radium concentration in soil samples has been found to vary from 11.54 to 26.71 BqKg−1, whereas uranium concentration varies from 0.75 to 2.06 ppm. The radon exhalation rate in these samples has been found to vary from 15.16 to 35.11 mBqKg−1 h−1 (502.12 to 1162.64 mBqm−2 h−1).  相似文献   

7.
LR-115 plastic track detectors have been used for the measurement of radon exhalation rate and radium concentration in soil samples collected from some villages of the Udhampur district, Jammu and Kashmir, India. Uranium concentration has also been determined in these soil samples using the fission track registration technique. Radium concentration in soil samples varies from 5.46 to 19.17 Bqkg?1, whereas uranium concentration varies from 2.53 to 3.65 ppm. The radon exhalation rate in these samples has been found to vary from 6.42 to 22.47 mB kg?1 hr?1. The work is undertaken for health risk assessments due to uranium and radium in the study area. A positive correlation has been observed between uranium and radium, as well as uranium and radon exhalation rate in soil samples.  相似文献   

8.
Measurements of radon exhalation for a total of 205 selected samples of construction materials used in Saudi Arabia were carried out using an active radon gas analyzer with an emanation container. It was found that granite samples were the main source of radon exhalation. The radon exhalation rates per unit area from these granite samples varied from below the minimum detection limit up to with an average of 1.5 . The radium contents of 27 granite samples were measured using an HPGe-based γ spectroscopy setup. The 226Ra content of the granites varied from below the minimum detection limit up to , with an average of . The linear correlation coefficient between exhaled radon and radium content was found to be 0.90.  相似文献   

9.
Radon was measured in soil-gas and groundwater in the Budhakedar area of Tehri Garhwal, India in summer and winter to obtain the seasonal variation and its correlation with radon exhalation rate. The environmental surface gamma dose rate was also measured in the same area. The radon exhalation rate in the soil sample collected from different geological unit of Budhakedar area was measured using plastic track detector (LR-115 type II) technique. The variation in the radon concentration in soil-gas was found to vary from 1098 to 31,776 Bq.m−3 with an average of 7456 Bq.m−3 in summer season and 3501 to 42883 Bq.m−3 with an average of 17148 Bq.m−3 in winter season. In groundwater, it was found to vary from 8 to 3047 Bq.l−1 with an average value 510 Bq.l−1 in summer and 26 to 2311 Bq.l−1 with an average value 433 Bq.L−1 in winter. Surface gamma dose rate in the study area varied from 32.4 to 83.6 μR.h−1 with an overall mean of 58.7 μ-R.h−1 in summer and 34.6 to 79.3 μR.h−1 with an average value 58.2 μR.h−1 in winter. Radon exhalation rate from collected soil samples was found to vary from 0.1 × 10−5 to 5.7 × 10−5 Bq.kg−1.h−1 with an average of 1.5 × 10−5 Bq.kg−1.h−1 in summer season and 1.7 × 10−5 to 9.6 × 10−5 Bq.kg−1.h−1 with an average of 5.5 × 10−5 Bq.kg−1.h−1. A weak negative correlation was observed between radon exhalation rate from soil and radon concentration in the soil. Radon exhalation rate from the soil was also not found to be correlated with the gamma dose rate, while it shows a positive correlation with radon concentration in water in summer season. Inter-correlations among various parameters are discussed in detail.   相似文献   

10.
A radon survey was carried out at an abandoned military airfield, heavily contaminated with non-aqueous phase-liquids (NAPLs). Geo-statistical analysis of the data was used to confirm the validity of the chosen soil gas sampling pattern. The survey revealed a non-uniform distribution of the soil gas radon concentration in the upper soil in spite of a virtually homogenous geological situation. The radon distribution pattern showed minimum zones with radon concentrations decreased by up to 90% with regard to the local background level. The determined radon minimum anomalies could be explicitly associated with the NAPL subsurface contamination. The observed effect is due to the strong partitioning of radon into NAPLs from soil gas or groundwater. Corresponding partitioning coefficients were determined in the laboratory for some NAPL. As result of the study, it was shown that naturally occurring soil gas radon has the potential to be used as an indicator for the localization of subsurface NAPL contamination. As possible options for survey equipment, the AlphaGUARD radon monitor and passive solid-state nuclear track detectors were successfully evaluated.  相似文献   

11.
With the growing understanding of the role of radon and its daughter products as major sources of radiation exposure, the importance of large number of estimation of radon concentration in various parts of the country is realized. Inhalation of radon, thoron and their decay products is the major source of the total radioactive dose received by the human population from natural radiation. The indoor radon and thoron progeny levels in Nalbari area of Assam are studied by using the LR-115 (type II) Solid State Nuclear Track Detector in Plastic Twin Chamber dosimeter. Radon and thoron progeny levels in different types of dwellings for one full calendar year are presented in this paper. For Assam Type (A.T.) houses, indoor radon progeny concentrations vary from 0.17 to 0.64 mWL with an annual geometric mean of 0.27 mWL and that for Reinforced Cement Concrete (R.C.C.) houses vary from 0.22 mWL to 0.60 mWL with the annual geometric mean of 0.37 mWL. The thoron progeny levels in A.T. houses also vary from 0.01 to of 0.05 mWL with an annual geometric mean of 0.02 mWL and that for R.C.C. houses vary from 0.02 to 0.08 mWL with the annual geometric mean of 0.04 mWL.   相似文献   

12.
CR-39 and LR-115 plastic nuclear track detectors in the can-technique have been employed in the field measurements of radon exhalation, Ra-226 and U-238 content in dry-soil air at numerous regions in Sudan (the Blue and White Nile and Mogran regions). Measurements gave an average radon exhalation from the soil to the atmosphere and Ra-226 content of (23.4 ± 2.60) kBq · m?2 and (123 ± 13.65) Bq · kg?1 respectively. A polyethylene permeable membrane cover was used to eliminate the contribution of thoron activity inside the can. Assuming a radioactive equilibrium between the U-series, the average U-238 content in the soil was found to be (9.92 ± 1.01) ppm. This survey may be used for uranium prospection in soil.  相似文献   

13.
A system of image analysis is applied to the track analysis of a plastic detector (LR 115). Based on track characteristics the system permits the separation of tracks produced by 222Rn and 218Po from those produced by 214Po. LR 115 was used inside a thin film geometry monitor and irradiated under very low ventilation conditions, where secular radioactive equilibrium between radon and progeny is expected. The monitor is used intending to exclude the entrance of external radon progeny in the sensitive volume of the plastic detector. The radioactive (secular) equilibrium is rapidly attained inside the monitor and equal numbers of particles from 218Po, 214Po and 222Rn are expected to reach the plastic. In order to guarantee good detection efficiency in the restricted volume, and to discriminate alpha energies, the LR 115 piece inside the monitor is covered with an aluminum foil of suitable thickness. The separation of tracks produced by alpha particles of different energies is made through the use of two track parameters related to area and opacity of the tracks. The ratio of tracks produced by (218Po and 222Rn) and 214Po—expected as two—is used to test the separation method in a series of controlled irradiations. Results point to the experimental attainment of radioactive equilibrium inside the monitor supporting the determination of 214Po concentration alone, and points to an exclusive entrance of 222Rn inside the monitor, at low ventilation rates. This way, in situations where radioactive equilibrium inside the monitor may be considered, the exclusive measurement of radon concentration in the environment is possible.  相似文献   

14.
Little is known about the radio-isotopic geochemistry of mud volcanoes in the Taman area, Krasnodar region, in the tectonic active zone of the Caucasus range. In 1998, we have started the determination of radon in soil air using solid state nuclear track detectors on a monthly basis. Tritium was determined out of water sampled at the mud volcano vents by means of both mass spectrometry and liquid scintillation. 22Na, 36Cl were also determined by means of a low background gamma spectrometer placed at a depth of 50 m in our underground laboratory. It was found that mud volcano fluids are of partial deep origin.  相似文献   

15.
Soil radon has been monitored at two fixed stations in the northern flank of Popocatepetl Volcano, a high risk volcano located 60 km SE from Mexico City. Water samples from three springs were also studied for radon as well as major and trace elements. Radon in the soil was recorded using track detectors. Radon in the water samples was evaluated using the liquid scintillation method and an Alphaguard. The major elements were determined through conventional chemical methods and trace elements using an ICP-MS equipment. Soil radon levels were low, indicating a moderate diffuse degassing through the flanks of the volcano. Groundwater radon had almost no relation with the eruptive stages. Water chemistry was stable in the reported time (2000–2002).  相似文献   

16.
The spatial variation of soil gas radon values were correlated with the seismogenic faults and earthquakes in the Tangshan area (north China). Radon concentrations were measured at 756 sites in an area about 2500 km2 from April to May 2010. The background and anomaly threshold values calculated were 4730.4 Bq/m3 and 8294.1 Bq/m3, respectively. Radon concentrations highlight a decreasing gradient from NE to SW in the area. Higher values mostly distributed in the NE sector of the Tangshan fault and the Luanxian fault where the Tangshan (Ms 7.8), and Luanxian (MS 7.1) earthquakes occurred in 1976 and 17 earthquakes with MS = 3.0 occurred in this area since 2005. Radon values illustrated a close relation with the shallow fault trace and earthquake activity in the area. The active fault zones and the associated fractures formed by the larger earthquakes, act as paths for radon migration.  相似文献   

17.
18.
Radon/thoron and their progeny concentrations were measured in different types of dwellings at different locations around industrial areas, cities and rural areas of Brahmaputra Valley of Assam by using LR-115 (type-II) plastic detector. Radon levels of different dwellings were analysed with reference to the nature of building materials, ventilation patterns and the types of underlying soil. The results were discussed under the light of exposure limits set by ICRP. The average concentrations of indoor radon and thoron varied from 39.5 to 215.2 Bqm−3 and 12.9 to 37.6 Bqm−3, respectively. The estimated inhalation dose due to radon, thoron and their daughter products in the study areas varied from 0.53 to 1.00 μSvh−1.  相似文献   

19.
Studies conducted by Atomic Minerals Directorate of Exploration and Research (AMD) of Hyderabad, India had established the presence of higher concentrations of uranium in Lambapur and Peddagattu areas of Nalgonda district, AP, India and it was estimated that it could be a viable source for commercial extraction. The envisaged extraction process involves dispersion of radioactive particulate matter into atmosphere. Environmental radioactive studies in and around proposed mining areas at this point of time will be extremely useful for establishing base line data before a large scale uranium extraction process comes into existence. To this end, Solid State Nuclear Track Detectors were installed to evaluate indoor radon and thoron concentration levels in the dwellings of the area. The geometric means of radon and thoron concentration levels were found to be (7.1±0.2)×101 and (6.7±0.3)×101 Bq/m3, respectively. Simultaneously, natural background radiation measurements were also made and these levels are found to vary from 770 to 3995 μGy/y in the spatial distribution.  相似文献   

20.
Radon concentration levels in water and soil gas from 36 locations pertaining to some areas of Malwa region of Punjab have been measured on an in situ basis using a continuous active radon detector (AlphaGuard, Model – PQ 2000 PRO, Genitron instruments, Germany). Exhalation rate measurements have also been carried out at these places, using a closed-circuit technique. The radon concentrations in soil and water varied from 1.9 to 16.4 kBq m?3 and 5.01 to 11.6 kBq m?3, respectively. The exhalation rate (E Rn) ranged between 7.48 and 35.88 mBq m?2 s?1 with an average value of 18.17 mBq m?2 s?1. Annual dose rates have been calculated for water radon concentrations. The minimum to maximum values of dose rates were found to be 13.42–31.08 μSv y?1. The recorded values of radon concentration in water are within the safe limit of 11 Bq l?1 recommended by the US Environment Protection Agency [National Research Council, Risk Assessment of Radon in Drinking Water (Academy Press, Washington, DC, USA, 1999)]. All measurements were made in similar climatic and environmental conditions to ensure minimal variations in meteorological parameters. An intermediate correlation coefficient (0.5) was observed between radon exhalation rates and soil gas values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号