首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA binding fusion protein, LacI–His6–GFP, together with the conjugate PEG–IDA–Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600–DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG–IDA–Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG–dextran system as a second extraction system, with 80–90% of pDNA partitioning to the bottom phase. This represents about 7.4 μg of pDNA extracted per 1 mL of pUC19 desalted lysate.  相似文献   

2.
Adsorptive membranes were investigated for the downstream processing of plasmid DNA by quantifying both separation efficiencies and adsorption uptake with the anion-exchange membranes. Separation efficiencies of the 10-ml Mustang-Q were measured using pulses of 6.1-kilo base pair plasmid DNA and lysozyme tracers, and comparing the responses for both conventional and reverse-flow operation. The plasmid exhibited nearly 200 plates/cm, almost as high efficiency as the protein despite the large difference in size. This behavior contrasts strongly with typical behavior for spherical porous particle packings, which predicted large decreases in efficiency with increases in tracer size. Batch adsorption isotherms for the 6.1-kilo base pair plasmid on small sheets of anion-exchange membranes at various ionic strengths showed high capacities for very large biomolecules. The maximum binding capacity for the membrane unit was calculated as 10 mg plasmid/ml, an order of magnitude greater than typical values reported for porous beads.  相似文献   

3.
We have evaluated a process incorporating aqueous two-phase extraction, hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for the purification of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cell supernatant. These unit operations were chosen not only for allowing the removal of target impurities but also for facilitating the integration of different process units without the need for any conditioning step. Extraction in aqueous two-phase systems (ATPSs), composed of polyethylene glycol (PEG) and sodium citrate, allowed the concentration of the antibodies in the citrate-rich phase and the removal of the most hydrophobic compounds in the PEG-rich phase. An ATPS composed of 10% (w/w) PEG 3350 and 12% (w/w) citrate, at pH 6, allowed the recovery of IgG with a 97% yield, 41% HPLC purity and 72% protein purity. This bottom phase was then directly loaded on a phenyl-Sepharose HIC column. This intermediate purification step allowed the capture of the antibodies using a citrate mobile phase with 99% of the antibody recovered in the elution fractions, with 86% HPLC purity and 91% protein purity. Finally, SEC allowed the final polishing by removing IgG aggregates. HIC-eluted fractions were directly injected in a Superose 6 size-exclusion column affording a 100% pure IgG solution with 90% yield.  相似文献   

4.
Retention properties of polyethylene glycol-phosphate aqueous two-phase systems in a spiral coil (5 mm I.D.) on Type-J synchronous counter-current chromatographic devices have been compared for the elution mode where the lower phase is the mobile phase and flows from the inside head terminal. This was achieved with the aid of digital imaging under stroboscopic illumination, an image analysis and measurement of the displaced volume of the stationary phase. For the spiral coil, high and stable stationary phase retention at mobile phase flow rates up to 64 ml/min has been obtained. Wave-like disturbance of the interface near the proximal point was observed and analyses have been made for possible use in protein separation.  相似文献   

5.
Chromatography is one of the key operations in the downstream processing of plasmid DNA (pDNA). However, the increased demand for highly purified pDNA experienced in recent years has made clear the need for alternative processes capable of retaining the advantages of conventional chromatography, such as selectivity, while providing increased throughput at a lower cost. The work presented in this article outlines the development and optimization of an alternative hydrophobic interaction membrane chromatography process for the purification of pDNA. The studies included the modification of functionalized membrane supports with a linear alkyl chain ligand and the testing of chromatographic performance of these membranes. Three modification procedures were tested and the membranes were screened for their capacity and selectivity. The modified membranes could separate the model plasmid pVAX1‐LacZ (6050 bp) from impurities in clarified Escherichia coli cell lysates (specifically RNA), with good resolution. Subsequent optimization of elution profiles with the best‐performing modified membrane, resulted in a high purification factor of 4.7, competitive with its bead process counterpart, and a plasmid yield of 73%.  相似文献   

6.
The current study explores the possibility of using a polyethyleneglycol(PEG)-ammonium sulphate aqueous two-phase system (ATPS) as an early step in a process for the purification of a model 6.1 kbp plasmid DNA (pDNA) vector. Neutralised alkaline lysates were fed directly to ATPS. Conditions were selected to direct pDNA towards the salt-rich bottom phase, so that this stream could be subsequently processed by hydrophobic interaction chromatography (HIC). Screening of the best conditions for ATPS extraction was performed using three PEG molecular weights (300, 400 and 600) and varying the tie-line length, phase volume ratio and lysate load. For a 20% (w/w) lysate load, the best results were obtained with PEG 600 using the shortest tie-line (38.16%, w/w). By further manipulating the system composition along this tie-line in order to obtain a top/bottom phase volume ratio of 9.3 (35%, w/w PEG 600, 6%, w/w NH4)2 SO4), it was possible to recover 100% of pDNA in the bottom phase with a three-fold increase in concentration. Further increase in the lysate load up to 40% (w/w) with this system resulted in a eight-fold increase in pDNA concentration, but with a yield loss of 15%. The ATPS extraction was integrated with HIC and the overall process compared with a previously defined process that uses sequential precipitations with iso-propanol and ammonium sulphate prior to HIC. Although the final yield is lower in the ATPS-based process the purity grade of the final pDNA product is higher. This shows that it is possible to substitute the time-consuming two-step precipitation procedure by a simple ATPS extraction.  相似文献   

7.
The present study describes the integration of membrane technology with monolithic chromatography to obtain plasmid DNA with high quality. Isolation and clarification of plasmid DNA lysate were first conducted by a microfiltration step, by using a hydrophilic nylon microfiltration membrane, avoiding the need of centrifugation. For the total elimination of the remaining impurities, a suitable purification step is required. Monolithic stationary phases have been successfully applied as an alternative to conventional supports. Thus, the sample recovered from the membrane process was applied into a nongrafted CarbonylDiImidazole disk. Throughout the global procedure, a reduced level of impurities such as proteins and RNA was obtained, and no genomic DNA was detectable in the plasmid DNA sample. The chromatographic process demonstrated an efficient performance on supercoiled plasmid DNA purity and recovery (100 and 84.44%, respectively). Thereby, combining the membrane technology to eliminate some impurities from lysate sample with an efficient chromatographic strategy to purify the supercoiled plasmid DNA arises as a powerful approach for industrial‐scale systems aiming at plasmid DNA purification.  相似文献   

8.
In the present study, we compared the performances of size-exclusion chromatography for the purification of plasmid DNA when different concentrations (0.5M, 1M, 2M, respectively) of two types of salt (NaCl and (NH(4))(2)SO(4)) are present in running buffers. Our experiment results displayed that it is not only the resolution of RNA but also those of supercoiled plasmid DNA and host's genomic DNA were increased greatly in the presence of high concentration of water-structure salt. We deduce that two separation modes may be involved in the process: The supercoiled plasmid DNA is influenced mainly by compaction effect and eluted in the size-exclusion mode; whereas, RNA and genomic DNA are influenced mainly by hydrophobic effect due to their stretched and loose structures and eluted in the interaction mode. This method led to an improved efficiency of size-exclusion chromatography.  相似文献   

9.
Two different laboratory scale liquid-liquid extraction processes using aqueous two-phase systems (ATPS) are compared: centrifugal partition chromatography (CPC) and multilayer toroidal coil chromatography (MTCC). Both use the same phase system, 12.5% (w/w) PEG-1000:12.5% (w/w) K(2)HPO(4), the same flow rate of 10 mL/min and a similar mean acceleration field of between 220 × g and 240 × g. The main performance difference between the two processes is that there is a continuous loss of stationary phase with CPC, while for MTCC there is not - even when sample loading is increased. Comparable separation efficiency is demonstrated using a mixture of lysozyme and myoglobin. A throughput of 0.14 g/h is possible with CPC despite having to refill the system with stationary phase before each injection. A higher throughput of 0.67 g/h is demonstrated with MTCC mainly due to its ability to tolerate serial sample injections which significantly reduces its cycle time. While CPC has already demonstrated that it can be scaled to pilot scale, MTCC has still to achieve this goal.  相似文献   

10.
Aqueous-aqueous two-phase (AATP) systems composed of polyethylene glycol (PEG) (molecular mass, M(r):1000-8000) and dextran (M(r):40,000) were evaluated for purification of maltose binding protein tagged-histone deacetylase (MBP-HDAC) by counter-current chromatography (CCC). CCC purification of an MBP-HDAC from Escherichia coli cell-lysate was successfully demonstrated with a 7.0% PEG 3350-10% dextran T40 system containing 10 mM potassium phosphate buffer at pH 9.0. After CCC purification, both polymers in the CCC fractions were easily removed by ultrafiltration in a short period of time. The collected fractions containing target protein were analyzed by an HPLC-based in vitro assay as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis. MBP tag was digested from fusion HDAC during the CCC separation and native HDAC was purified by one-step operation with well preserved deacetyl enzyme activity.  相似文献   

11.
Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification.  相似文献   

12.
Purification of alpha-amylase from the cultivation supernatant of recombinant Bacillus subtilis by high-speed counter-current chromatography (HSCCC) in polyethylene glycol (PEG) 4000-inorganic salt aqueous polymer two-phase systems was studied. The effects of sodium chloride concentration on the partition coefficients of alpha-amylase and total protein were respectively tested in PEG4000-phosphate and PEG4000-citrate aqueous polymer two-phase systems to find the proper range of sodium chloride concentration for the HSCCC purification of alpha-amylase. Alpha-amylase was purified from the cultivation supernatant by HSCCC in PEG4000-phosphate system containing 2% (w/w) sodium chloride, yet with considerable loss of activity. PEG4000-citrate aqueous polymer two-phase system containing 2% (w/w) sodium chloride and supplemented with 0.56% (w/w) CaCl2 as protective agent was then successfully applied to purify alpha-amylase from cultivation supernatant by HSCCC to homogeneity and significantly increased the recovery of alpha-amylase activity from around 30 to 73.1%.  相似文献   

13.
Membrane proteins play essential roles in regulating various fundamental cellular functions. To investigate membrane proteins, extraction and purification are usually prerequisite steps. Here, we demonstrated a microfluidic aqueous PEG/detergent two-phase system for the purification of membrane proteins from crude cell extract, which replaced the conventional discontinuous agitation method with continuous extraction in laminar flows, resulting in significantly increased extraction speed and efficiency. To evaluate this system, different separation and detection methods were used to identify the purified proteins, such as capillary electrophoresis, SDS-PAGE and nano-HPLC-MS/MS. Swiss-Prot database with Mascot search engine was used to search for membrane proteins from random selected bands of SDS-PAGE. Results indicated that efficient purification of membrane proteins can be achieved within 5-7s and approximately 90% of the purified proteins were membrane proteins (the highest extraction efficiency reported up to date), including membrane-associated proteins and integral membrane proteins with multiple transmembrane domains. Compared to conventional approaches, this new method had advantages of greater specific surface area, minimal emulsification, reduced sample consumption and analysis time. We expect the developed method to be potentially useful in membrane protein purifications, facilitating the investigation of membrane proteomics.  相似文献   

14.
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by 1H nuclear magnetic resonance (1H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins.  相似文献   

15.
A hydrophobic interaction HPLC method was developed for the quantification of plasmid DNA and assessment of its purity in crude Escherichia coli lysates and other process streams. A Phenyl Sepharose Source (Amersham Biosciences) column was used to separate the double-stranded plasmid DNA molecules from the more hydrophobic impurities present in the process streams. The method is rapid (each analysis takes 7 min), reproducible, easy to perform and does not require previous digestion of RNA in samples with RNase or other pre-treatment. Furthermore, it is capable of handling heavily contaminated samples, with less than 5% of plasmid DNA thus constituting a good alternative to other less robust analytical techniques currently in use.  相似文献   

16.
Pre-fractionation of a complex mixture of proteins increases the resolution in analytical separations of proteins from cells, tissues or organisms. Here we demonstrate a novel method for pre-fractionation of membrane proteins by a detergent-based aqueous two-phase system. Membrane proteins are strongly under-represented in proteomic studies based on two-dimensional electrophoresis (2-DE). As a model system, we have isolated mitochondria from the yeast Saccharomyces cerevisiae. Mitochondrial proteins were fractionated in an aqueous two-phase system consisting of the polymer poly(ethylene glycol) and either of two commonly used non-ionic detergents, Triton X-114 or dodecyl maltoside (DDM). Soluble proteins partitioned mainly to the polymer phase while membrane proteins were enriched in the detergent phase, as identified from one-dimensional electrophoresis (1-DE) and/or 2-DE followed by mass spectrometric analysis. Pre-fractionation was further enhanced by addition of an anionic detergent, sodium dodecyl sulfate, or a chaotropic salt, NaClO4, and by raising the pH in the system. The two-phase system pre-fractionation was furthermore combined with an alternative two-dimensional high-resolution separation method, namely ion-exchange chromatography and 1-DE. By this approach a larger number of membrane proteins could be identified compared to separation with conventional 2-DE. Thus, pre-fractionation of complex protein mixtures using the aqueous two-phase systems developed here will help to disclose larger proportions of membrane proteins in different proteomes.  相似文献   

17.
New interesting strategies for plasmid DNA (pDNA) purification were designed, exploiting affinity interactions between amino acids and nucleic acids. The potential application of arginine-based chromatography to purify pDNA has been recently described in our work; however, to achieve higher efficiency and selectivity in arginine affinity chromatography, it is essential to characterize the behaviour of binding/elution of supercoiled (sc) isoforms. In this study, two different strategies based on increased sodium chloride (225-250 mm) or arginine (20-70 mm) stepwise gradients are described to purify sc isoforms. Thus, it was proved that well-defined binding/elution conditions are crucial to enhance the purification performance, resulting in an improvement of the final plasmids yields and transfection efficiency, as this could represent a significant impact on therapeutic applications of the purified sc isoform.  相似文献   

18.
A two-step process was developed for the purification of polysaccharides from the pulp of Aloe varavia using aqueous two-phase system (ATPS) extraction and a novel copolymer ultrafiltration membrane. The first step was ATPS under optimal separations conditions using a total composition of 18% PEG2000, 25% ammonium sulfate, pH 3.0, and 0.3 M NaCl. To form the copolymer membrane, poly(acrylonitrile-acrylamide-styrene) was prepared by solution polycondensation using azoisobutyronitrile as initiator. Then, membranes were formed from the dissolved copolymer by the phase inversion method. Copolymer structure was investigated by infrared spectrum and thermogravimetric analysis (TGA). The copolymer membrane surface and cross section were observed by scanning electron microscopy. The water flux of this membrane was 26.33 mL/(cm2 h), and retention was 96% for bovine serum albumin and 34% for dextran T40000. The separation and purification of aloe polysaccharide were carried using this copolymer membrane following ATPS. The TGA of aloe polysaccharide demonstrated a high purity of the polysaccharide. By gas chromatographic analysis, it was shown that mannose is the main monosaccharide in the aloe polysaccharide, and only a few glucose residues are present.  相似文献   

19.
Using the simulation program CHEMCAD, performance characteristics, design optimization, and costs of an absorption/stripping system used to purify 100 kg h?1 of biogas in a biogas power plant were investigated. Potential absorbents used in the chemical absorption process were the following aqueous solutions: pure diglycolamine, diglycolamine/piperazine, and diglycolamine/methyldiethanolamine/piperazine. Mixtures for agricultural biogas purification to below 1 vol. % of CO2 and 4 × 10?4 mass % of H2S were determined via a simulation in the above mentioned program. The chosen mixtures were then entered into an absorption/desorption system and simulations for each unit were provided by CHEMCAD. From the simulation results, the design parameters were calculated and entered into each unit??s ??cost estimation?? section in the aforementioned program to estimate the purchase costs of the apparatuses. Taking into account the installation, maintenance, as well as other additional costs, the actual machine purchase costs were multiplied by the Lang factor. Costs of additional streams were also calculated by multiplying the ten-year utility losses by their respective cost factors. From these calculations, the absorbent mixture, allowing biogas production at the lowest estimated costs for ten years, was found.  相似文献   

20.
In this work, the interfacing of a poly(ethylene glycol) (PEG)-phosphate aqueous two-phase system with hydrophobic interaction chromatography (HIC) for primary recovery of an intracellular protein was evaluated. As a model protein, a recombinant cutinase furnished with a tryptophan-proline (WP) peptide tag was used and produced intracellularly in Escherichia coli (E. coli). E. coli cell homogenate was partitioned in a two-phase system and the top phase yield, concentration and purity of the tagged ZZ-cutinase-(WP)4 was evaluated as function of polymer sizes, system pH and phase volume ratio. The partition behaviour of cell debris, total protein and endotoxin was also monitored. In the HIC part, the chromatographic yield and purity was investigated with respect to ligand hydrophobicity, dilution of loaded top phase and elution conditions. Based on the results, a recovery process was demonstrated where a PEG 1500-K-Na phosphate salt aqueous two-phase system was interfaced with a HIC column. The interfacing was facilitated by the Trp-tagged peptide. The tagged ZZ-cutinase-(WP)4 was obtained in a PEG-free phase and purified to >95% purity according to silver stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels with a total yield of 83% during the two-step recovery process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号