首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widespread occurrence and significance of chiral compounds does not only require new methods for their enantioselective synthesis but also efficient tools that allow rapid determination of the absolute configuration, enantiomeric composition and overall concentration of nonracemic mixtures. Although chiral analysis is a frequently encountered challenge in the chemical, environmental, materials and health sciences it is typically addressed with slow and laborious chromatographic or NMR spectroscopic techniques. We now show with almost 40 analytes representing 5 different compound classes, including mono-alcohols which are particularly challenging sensing targets, that this task can be solved very quickly by chiroptical sensing with a single, readily available arylisocyanate probe. The probe reacts smoothly and irreversibly with amino and alcohol groups when an organocatalyst is used at room temperature toward urea or carbamate products exhibiting characteristic UV and CD signals above 300 nm. The UV signal induction is not enantioselective and correlated to the total concentration of both enantiomers, the concomitant generation of a CD band allows determination of the enantiomeric composition from the same sample, and the sense of the induced Cotton effect reveals the absolute configuration by comparison with a reference. This approach eliminates complications that can arise when enantiomerically impure NMR derivatizing agents are used and it outperforms time-consuming HPLC protocols. The generation of distinct UV and CD signals at high wavelengths overcomes issues with insufficient resolution of overlapping signals often encountered with chiral NMR solvating agents that rely on weak binding forces. The broad solvent compatibility is another noteworthy and important characteristic of this assay. It addresses frequently encountered problems with insufficient solubility of polar analytes, for example pharmaceuticals, in standard mobile phase mixtures required for chiral HPLC analysis. We anticipate that the broad application spectrum, ruggedness and practicality of organocatalytic chiroptical sensing with aryliso(thio)cyanate probes together with the availability of automated CD multi-well plate readers carry exceptional promise to accelerate chiral compound development projects at reduced cost and with less waste production.

Organocatalysis with a simple arylisocyanate probe enables accelerated optical concentration and enantiomeric ratio determination of a large variety of chiral compounds based on straightforward UV/CD analysis.  相似文献   

2.
Mechanically interlocked molecules can exhibit molecular chirality that arises due to the mechanical bond rather than covalent stereogenic units. Developing applications of such systems is made challenging by the absence of techniques for assigning the absolute configuration of products and methods to probe how the mechanical stereogenic unit influences the spatial arrangements of the functional groups in solution. Here we demonstrate for the first time that Vibrational Circular Dichroism (VCD) can be used to not only discriminate between mechanical stereoisomers but also provide detailed information on their (co)conformations. The latter is particularly important as these molecules are now under investigation in catalysis and sensing, both of which rely on the solution phase shape of the interlocked structure. Detailed analysis of the VCD spectra shows that, although many of the signals arise from coupled oscillators isolated in the covalent sub-components, intercomponent coupling between the macrocycle and axle gives rise to several VCD bands.

Through the looking glass: VCD spectroscopy provides unique insight into how a chiral mechanical bond imposes shape on rotaxanes in solution and allows their absolute configuration to be determined.  相似文献   

3.
A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides. The reaction proceeds via a selective reaction between the l-peptide and the l-sugar producing an Amadori rearrangement byproduct and leaving d-glyceraldehyde in excess. Solubility considerations in the synthesis of proline–valine (pro–val) peptides allow nearly enantiopure pro–val to be formed starting from racemic pro and nearly racemic (10%) ee val. (ee = enantiomeric excess = (|dl|)/(d + l)) Thus enantioenrichment of glyceraldehyde is achieved in a system with minimal initial chiral bias. This work demonstrates synergy between amino acids and sugars in the emergence of biological homochirality.

A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides.  相似文献   

4.
Understanding and controlling molecular recognition mechanisms at a chiral solid interface is a continuously addressed challenge in heterogeneous catalysis. Here, the molecular recognition of a chiral peptide-functionalized metal–organic framework (MOF) catalyst towards a pro-chiral substrate is evaluated experimentally and in silico. The MIL-101 metal–organic framework is used as a macroligand for hosting a Noyori-type chiral ruthenium molecular catalyst, namely (benzene)Ru@MIL-101-NH-Gly-Pro. Its catalytic perfomance toward the asymmetric transfer hydrogenation (ATH) of acetophenone into R- and S-phenylethanol are assessed. The excellent match between the experimentally obtained enantiomeric excesses and the computational outcomes provides a robust atomic-level rationale for the observed product selectivities. The unprecedented role of the MOF in confining the molecular Ru-catalyst and in determining the access of the prochiral substrate to the active site is revealed in terms of highly face-specific host–guest interactions. The predicted surface-specific face differentiation of the prochiral substrate is experimentally corroborated since a three-fold increase in enantiomeric excess is obtained with the heterogeneous MOF-based catalyst when compared to its homogeneous molecular counterpart.

Understanding and controlling molecular recognition mechanisms at a chiral solid interface has been addressed in metal–organic framework catalysts for the asymmetric transfer hydrogenation reaction.  相似文献   

5.
Intermolecular asymmetric haloamination reactions are challenging due to the inherently high halenium affinity (HalA) of the nitrogen atom, which often leads to N-halogenated products as a kinetic trap. To circumvent this issue, acetonitrile, possessing a low HalA, was used as the nucleophile in the catalytic asymmetric Ritter-type chloroamidation of allyl-amides. This method is compatible with Z and E alkenes with both alkyl and aromatic substitution. Mild acidic workup reveals the 1,2-chloroamide products with enantiomeric excess greater than 95% for many examples. We also report the successful use of the sulfonamide chlorenium reagent dichloramine-T in this chlorenium-initiated catalytic asymmetric Ritter-type reaction. Facile modifications lead to chiral imidazoline, guanidine, and orthogonally protected 1,2,3 chiral tri-amines.

Intermolecular haloamination reactions are challenging due to the high halenium affinity of the nitrogen atom. This is circumvented by using acetonitrile as an attenuated nucleophile, resulting in an enantioselective halo-Ritter reaction.  相似文献   

6.
Chiral nonbonding interaction with N-protected amino acid methyl esters used as chiral additives in achiral solvents allows dynamic induction of single-handed helical conformation in poly(quinoxaline-2,3-diyl)s (PQX) bearing only achiral substituents. Ac-l-Pro-OMe, for instance, allows induction of energy preference of 0.16 kJ mol−1 per monomer unit for the M-helical structure over the P-helix in t-butyl methyl ether (MTBE). With this new mode of screw-sense induction, homochiral screw-sense has been induced in virtually achiral poly(quinoxaline-2,3-diyl)s 1000-mer containing phosphine pendants (PQXphos). Use of PQXphos as a helically dynamic ligand along with Ac-Pro-OMe (l or d) as a chiral additive in MTBE allowed a highly enantioselective Suzuki–Miyaura coupling reaction with up to 95% enantiomeric excess.

Achiral poly(quinoxaline-2,3-diyl) containing Ar2P groups undergo dynamic induction of M-helical conformation through nonbonding interaction with protected AA such as Ac-l-Pro-OMe, serving as a chiral ligand in asymmetric cross-coupling with up to 95% ee.  相似文献   

7.
Herein we report an amplification system of helical excess triggered by nucleic acid hybridization for the first time. It is usually impossible to prepare achiral nanostructures composed of nucleic acids because of their intrinsic chirality. We used serinol nucleic acid (SNA) oligomers for the preparation of achiral nanowires because SNA oligomers with symmetrical sequences are achiral. Nanowire formation was confirmed by atomic force microscopy and size exclusion chromatography. When a chiral nucleic acid with a sequence complementary to SNA was added to the nanostructure, helicity was induced and a strong circular dichroism signal was observed. The SNA nanowire could amplify the helicity of chiral nucleic acids through nucleobase stacks. The SNA nanostructures have potential for use as platforms to detect chiral biomolecules under aqueous conditions because SNA can be readily functionalized and is water-soluble.

Herein we report an amplification system of helical excess triggered by nucleic acid hybridization for the first time.  相似文献   

8.
New types of C2-symmetric chiral macrodiolides are readily obtained via chiral N,N′-dioxide-scandium(iii) complex-promoted asymmetric tandem Friedel–Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles. This protocol provides an array of enantioenriched macrodiolides with 16, 18 or 20-membered rings in moderate to good yields with high diastereoselectivities and excellent enantioselectivities through adjusting the length of the tether at the C3 position of indoles. Density functional theory calculations indicate that the formation of macrocycles is more favorable than that of 9-membered-ring lactones in terms of kinetics and thermodynamics. The potential utility of these intriguing chiral macrodiolide molecules is demonstrated in the enantiomeric recognition of aminols and chemical recognition of metal ions.

An asymmetric tandem Friedel–Crafts alkylation/intermolecular macrolactonization of ortho-quinone methides with C3-substituted indoles was achieved by using a chiral N,N′-dioxide-scandium(iii) complex.  相似文献   

9.
All-carbon quaternary stereocenters are ubiquitous in natural products and significant in drug molecules. However, construction of all-carbon stereocenters is a challenging project due to their congested chemical environment. And, when vicinal all-carbon quaternary stereocenters are present in one molecule, they will dramatically increase its synthetic challenge. A chiral titanium promoted enantioselective photoenolization/Diels–Alder (PEDA) reaction allows largely stereohindered tetra-substituted dienophiles to interact with highly active photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing vicinal all-carbon quaternary centers in excellent enantiomeric excess through one-step operation. This newly developed enantioselective PEDA reaction will inspire other advances in asymmetric excited-state reactions, and could be used in the total synthesis of structurally related complex natural products or drug-like molecules for drug discovery.

An enantioselective PEDA reaction was developed to enable stereohindered dienophiles to interact with transient photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing 2–3 vicinal all-carbon quaternary centers in good yield and excellent ee.  相似文献   

10.
Amphirionin-2 is a linear polyketide metabolite that exhibits potent and selective cytotoxic activity against certain human cancer cell lines. We disclose herein the first total synthesis of amphirionin-2 and determination of its absolute configuration. Our synthesis featured an extensive use of cobalt-catalyzed Mukaiyama-type cyclization of γ-hydroxy olefins for stereoselective formation of all the tetrahydrofuran rings found in the natural product, and a late-stage Stille-type coupling for convergent assembly of the entire carbon backbone. Four candidate diastereomers of amphirionin-2 were synthesized in a unified, convergent manner, and their spectroscopic/chromatographic properties were compared with those of the authentic material. The present study culminated in the reassignment of the C5/C7 relative configuration, assignment of the C12/C18 relative configuration, and determination of the absolute configuration of amphirionin-2.

An extensive application of cobalt-catalyzed Mukaiyama-type cyclization of γ-hydroxy olefins and a late-stage Stille-type reaction enabled syntheses of four diastereomers of amphirionin-2 to establish its absolute configuration.  相似文献   

11.
An anti-selective catalytic asymmetric Michael-type vinylogous addition of β,γ-butenolides to chromones was developed. The catalyst system developed herein is characterized by tuning of the steric and electronic effects using a proper Biphep-type chiral ligand to invert the diastereoselection, and improvement of the catalyst turnover by a coordinative phenolic additive. The catalytic protocol renders potentially biologically active natural product analogs accessible in good yield with moderate diastereoselectivity and high enantiomeric purity, mostly greater than 99% ee.

An anti-selective catalytic asymmetric Michael-type vinylogous addition of β,γ-butenolides to chromones was developed.  相似文献   

12.
The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS). Key innovations in this synthesis consist of (1) a highly efficient electro-oxidative dearomatization; (2) an unprecedented bisoxirane-directed intermolecular aldol reaction from the sterically hindered face of the ketone and (3) the diastereoselective one-step Meerwein–Eschenmoser–Claisen rearrangement enabling the construction of vicinal quaternary stereocenters. Related family members e.g. penicimutanolone (3) and penicimutatin (5) have also been synthesized alongside, elucidating their absolute configurations, hence the absolute configuration of 1.

The first total synthesis of penicimutanin A (1) was achieved within 10 steps (LLS).  相似文献   

13.
Enantioselective transition metal catalysis directed by chiral cations is the amalgamation of chiral cation catalysis and organometallic catalysis. Thus far, three strategies have been revealed: ligand scaffolds incorporated on chiral cations, chiral cations paired with transition metal ‘ate’-type complexes, and ligand scaffolds incorporated on achiral anions. Chiral cation ion-pair catalysis has been successfully applied to alkylation, cycloaddition, dihydroxylation, oxohydroxylation, sulfoxidation, epoxidation and C–H borylation. This development represents an effective approach to promote the cooperation between chiral cations and transition metals, increasing the versatility and capability of both these forms of catalysts. In this review, we present current examples of the three strategies and suggest possible inclusions for the future.

Enantioselective transition metal catalysis directed by chiral cations is the amalgamation of chiral cation catalysis and organometallic catalysis.  相似文献   

14.
Nuclear Overhauser Effect (NOE) methods in NMR are an important tool for 3D structural analysis of small molecules. Quantitative NOE methods conventionally rely on reference distances, known distances that have to be spectrally separated and are not always available. Here we present a new method for evaluation and 3D structure selection that does not require a reference distance, instead utilizing structures optimized by molecular mechanics, enabling NOE evaluation even on molecules without suitable reference groups.

A quantitative Nuclear Overhauser Effect (NOE) analysis approach that avoids the use of and internal reference distance to perform molecular configuration selection.  相似文献   

15.
The dissymmetric interaction between circularly polarised (CP) light and chiral molecules is central to a range of areas, from spectroscopy and imaging to next-generation photonic devices. However, the selectivity in absorption or emission of left-handed versus right-handed CP light is low for many molecular systems. In this perspective, we assess the magnitude of the measured chiroptical response for a variety of chiral systems, ranging from small molecules to large supramolecular assemblies, and highlight the challenges towards enhancing chiroptical activity. We explain the origins of low CP dissymmetry and showcase recent examples in which molecular design, and the modification of light itself, enable larger responses. Our discussion spans spatial extension of the chiral chromophore, manipulation of transition dipole moments, exploitation of forbidden transitions and creation of macroscopic chiral structures; all of which can increase the dissymmetry. Whilst the specific strategy taken to enhance the dissymmetric interaction will depend on the application of interest, these approaches offer hope for the development and advancement of all research fields that involve interactions of chiral molecules and light.

This perspective explores the dissymmetric interaction between circularly polarised (CP) light and chiral molecules. Such interactions are central to many applications from next generation displays to asymmetric photochemical synthesis.  相似文献   

16.
A chiral Lewis acid-catalyzed enantioselective addition of thiols to silyl glyoxylates was developed. The reaction proceeds well with a broad range of thiols and acylsilanes, affording the target tertiary chiral α-silyl–α-sulfydryl alcohols with multi-hetero-atom carbon stereocenters in excellent yields (up to 99%) and enantioselectivities (up to 98% ee). A series of control experiments were conducted to elucidate the reaction mechanism.

Enantioselective addition of thiols to silyl glyoxylates for construction of a multi-hetero-atom substituted carbon stereocenter was described.  相似文献   

17.
A simple chiroptical solution for the absolute stereochemical determination for asymmetric phosphorus V stereocenters is presented. Strong coordination of the phosphorus oxide with the Zn-metallo center of the racemic host Zn-MAPOL 2 leads to an induced axial chirality of the host, yielding a strong ECCD signal. A mnemonic is proposed to correlate the asymmetry of the guest molecule with the observed ECCD signal.

A simple chiroptical solution for the absolute stereochemical determination for asymmetric phosphorus V stereocenters is presented.  相似文献   

18.
Chiral primary amines are important intermediates in the synthesis of pharmaceutical compounds. Fungal reductive aminases (RedAms) are NADPH-dependent dehydrogenases that catalyse reductive amination of a range of ketones with short-chain primary amines supplied in an equimolar ratio to give corresponding secondary amines. Herein we describe structural and biochemical characterisation as well as synthetic applications of two RedAms from Neosartorya spp. (NfRedAm and NfisRedAm) that display a distinctive activity amongst fungal RedAms, namely a superior ability to use ammonia as the amine partner. Using these enzymes, we demonstrate the synthesis of a broad range of primary amines, with conversions up to >97% and excellent enantiomeric excess. Temperature dependent studies showed that these homologues also possess greater thermal stability compared to other enzymes within this family. Their synthetic applicability is further demonstrated by the production of several primary and secondary amines with turnover numbers (TN) up to 14 000 as well as continous flow reactions, obtaining chiral amines such as (R)-2-aminohexane in space time yields up to 8.1 g L−1 h−1. The remarkable features of NfRedAm and NfisRedAm highlight their potential for wider synthetic application as well as expanding the biocatalytic toolbox available for chiral amine synthesis.

Fungal reductive aminases as effective biocatalysts for the preparation of chiral primary amines.  相似文献   

19.
An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies. In this protocol, a catalytic amount of additive, a halogenated salt, plays a crucial role in the success. Control experiments and theoretical studies disclosed that the four-membered ring transmetallation transition states which were stabilized by a halide anion are the key to yields and stereochemical outcomes.

An enantioselective 1,4-borylstannation of 1,3-enynes employed a chiral sulfoxide phosphine (SOP)/Cu complex as a catalyst, and the desired products, chiral allenylstannes, were first synthesized by asymmetric catalysis with satisfactory yields and enantioselectivies.  相似文献   

20.
A novel method by a one-step introduction of axial chirality and sterically hindered group has been developed for facile synthesis of axially chiral styrene-type carboxylic acids. With the palladium-catalyzed C–H arylation and olefination of readily available cinnamic acid established, this transformation demonstrated excellent yield, excellent stereocontrol (up to 99% yield and 99% ee), and broad substrate scope under mild conditions. The axially chiral styrene-type carboxylic acids produced have been successfully applied to Cp*CoIII-catalyzed asymmetric C–H activation reactions, indicating their potential as chiral ligands or catalysts in asymmetric synthesis.

Palladium-catalyzed asymmetric C–H functionalization to yield axially chiral styrene-type carboxylic acids is described, in which axial chirality and sterically hindered group were incorporated in one-step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号