首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA-encoded library technology (DELT) employs DNA as a barcode to track the sequence of chemical reactions and enables the design and synthesis of libraries with billions of small molecules through combinatorial expansion. This powerful technology platform has been successfully demonstrated for hit identification and target validation for many types of diseases. As a highly integrated technology platform, DEL is capable of accelerating the translation of synthetic chemistry by using on-DNA compatible reactions or off-DNA scaffold synthesis. Herein, we report the development of a series of novel on-DNA transformations based on oxindole scaffolds for the design and synthesis of diversity-oriented DNA-encoded libraries for screening. Specifically, we have developed 1,3-dipolar cyclizations, cyclopropanations, ring-opening of reactions of aziridines and Claisen–Schmidt condensations to construct diverse oxindole derivatives. The majority of these transformations enable a diversity-oriented synthesis of DNA-encoded oxindole libraries which have been used in the successful hit identification for three protein targets. We have demonstrated that a diversified strategy for DEL synthesis could accelerate the application of synthetic chemistry for drug discovery.

Constructing DNA-encoded oxindole libraries by a diversified strategy.  相似文献   

2.
The use of biocatalysts for fragment-based drug discovery has yet to be fully investigated, despite the promise enzymes hold for the synthesis of poly-functional, non-protected small molecules. Here we analyze products of the biocatalysis literature to demonstrate the potential for not only fragment generation, but also the enzyme-mediated elaboration of these fragments. Our analysis demonstrates that biocatalytic products can readily populate 3D chemical space, offering diverse catalytic approaches to help generate new, bioactive molecules.

This perspective discusses how biocatalysis could play an important role in the future fragment-based drug discovery.  相似文献   

3.
Structure-based virtual screening is an important tool in early stage drug discovery that scores the interactions between a target protein and candidate ligands. As virtual libraries continue to grow (in excess of 108 molecules), so too do the resources necessary to conduct exhaustive virtual screening campaigns on these libraries. However, Bayesian optimization techniques, previously employed in other scientific discovery problems, can aid in their exploration: a surrogate structure–property relationship model trained on the predicted affinities of a subset of the library can be applied to the remaining library members, allowing the least promising compounds to be excluded from evaluation. In this study, we explore the application of these techniques to computational docking datasets and assess the impact of surrogate model architecture, acquisition function, and acquisition batch size on optimization performance. We observe significant reductions in computational costs; for example, using a directed-message passing neural network we can identify 94.8% or 89.3% of the top-50 000 ligands in a 100M member library after testing only 2.4% of candidate ligands using an upper confidence bound or greedy acquisition strategy, respectively. Such model-guided searches mitigate the increasing computational costs of screening increasingly large virtual libraries and can accelerate high-throughput virtual screening campaigns with applications beyond docking.

Bayesian optimization can accelerate structure-based virtual screening campaigns by minimizing the total number of simulations performed while still identifying the vast majority of computational hits.  相似文献   

4.
We have analysed 131 fragment-to-lead (F2L) examples targeting a wide variety of protein families published by academic and industrial laboratories between 2015–2019. Our assessment of X-ray structural data identifies the most common polar functional groups involved in fragment-protein binding are: N–H (hydrogen bond donors on aromatic and aliphatic N–H, amides and anilines; totalling 35%), aromatic nitrogen atoms (hydrogen bond acceptors; totalling 23%), and carbonyl oxygen group atoms (hydrogen bond acceptors on amides, ureas and ketones; totalling 22%). Furthermore, the elaboration of each fragment into its corresponding lead is analysed to identify the nominal synthetic growth vectors. In ∼80% of cases, growth originates from an aromatic or aliphatic carbon on the fragment and more than 50% of the total bonds formed are carbon–carbon bonds. This analysis reveals that growth from carbocentric vectors is key and therefore robust C–H functionalisation methods that tolerate the innate polar functionality on fragments could transform fragment-based drug discovery (FBDD). As a further resource to the community, we have provided the full data of our analysis as well as an online overlay page of the X-ray structures of the fragment hit and leads: https://astx.com/interactive/F2L-2021/

An in depth meta analysis of 131 fragment-to-lead case-studies has shown the importance of synthetic methods that allow carbon-centred synthetic elaboration in the presence of polar pharmacophores.  相似文献   

5.
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)–H functionalisations of high potential value towards advancing fragment hits by ‘growing’ functionalised rings and chains from unconventional, carbon-centred vectors.

This Perspective reviews recently developed methods that are likely to be of value to the elaboration of sp3-rich fragments from carbon-centred vectors, whilst maintaining key fragment-to-target binding interactions.  相似文献   

6.
Methods for rapid identification of chemical tools are essential for the validation of emerging targets and to provide medicinal chemistry starting points for the development of new medicines. Here, we report a screening platform that combines ‘direct-to-biology’ high-throughput chemistry (D2B-HTC) with photoreactive fragments. The platform enabled the rapid synthesis of >1000 PhotoAffinity Bits (HTC-PhABits) in 384-well plates in 24 h and their subsequent screening as crude reaction products with a protein target without purification. Screening the HTC-PhABit library with carbonic anhydrase I (CAI) afforded 7 hits (0.7% hit rate), which were found to covalently crosslink in the Zn2+ binding pocket. A powerful advantage of the D2B-HTC screening platform is the ability to rapidly perform iterative design–make–test cycles, accelerating the development and optimisation of chemical tools and medicinal chemistry starting points with little investment of resource.

A photoreactive fragment screening platform employing direct-to-biology high-throughput chemistry (D2B-HTC) for the rapid iterative synthesis and screening of libraries of photoaffinity bits.  相似文献   

7.
Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity – particularly fragments with three-dimensional (3D) structures – has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called ‘metallofragments’ (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.

Fragment-based drug discovery (FBDD) using 3-dimensional metallofragments is a new strategy for the identification of bioactive molecules.  相似文献   

8.
β-Strand mediated protein–protein interactions (PPIs) represent underexploited targets for chemical probe development despite representing a significant proportion of known and therapeutically relevant PPI targets. β-Strand mimicry is challenging given that both amino acid side-chains and backbone hydrogen-bonds are typically required for molecular recognition, yet these are oriented along perpendicular vectors. This paper describes an alternative approach, using GKAP/SHANK1 PDZ as a model and dynamic ligation screening to identify small-molecule replacements for tranches of peptide sequence. A peptide truncation of GKAP functionalized at the N- and C-termini with acylhydrazone groups was used as an anchor. Reversible acylhydrazone bond exchange with a library of aldehyde fragments in the presence of the protein as template and in situ screening using a fluorescence anisotropy (FA) assay identified peptide hybrid hits with comparable affinity to the GKAP peptide binding sequence. Identified hits were validated using FA, ITC, NMR and X-ray crystallography to confirm selective inhibition of the target PDZ-mediated PPI and mode of binding. These analyses together with molecular dynamics simulations demonstrated the ligands make transient interactions with an unoccupied basic patch through electrostatic interactions, establishing proof-of-concept that this unbiased approach to ligand discovery represents a powerful addition to the armory of tools that can be used to identify PPI modulators.

Dynamic ligation screening is used to identify acylhydrazone-linked peptide-fragment hybrids which bind to the SHANK1 PDZ domain with comparable affinity to the native GKAP peptide as shown by biophysical and structural analyses.  相似文献   

9.
Protein–protein interactions (PPIs) are central to biological mechanisms, and can serve as compelling targets for drug discovery. Yet, the discovery of small molecule inhibitors of PPIs remains challenging given the large and typically shallow topography of the interacting protein surfaces. Here, we describe a general approach to the discovery of orthosteric PPI inhibitors that mimic specific secondary protein structures. Initially, hot residues at protein–protein interfaces are identified in silico or from experimental data, and incorporated into secondary structure-based queries. Virtual libraries of small molecules are then shape-matched against the queries, and promising ligands docked to target proteins. The approach is exemplified experimentally using two unrelated PPIs that are mediated by an α-helix (p53/hDM2) and a β-strand (GKAP/SHANK1-PDZ). In each case, selective PPI inhibitors are discovered with low μM activity as determined by a combination of fluorescence anisotropy and 1H–15N HSQC experiments. In addition, hit expansion yields a series of PPI inhibitors with defined structure–activity relationships. It is envisaged that the generality of the approach will enable discovery of inhibitors of a wide range of unrelated secondary structure-mediated PPIs.

Small-molecule protein–protein interaction inhibitors were prioritised on the basis of shape similarity to secondary structure-based queries incorporating hot-spot residues.  相似文献   

10.
In-solution affinity selection (AS) of large synthetic peptide libraries affords identification of binders to protein targets through access to an expanded chemical space. Standard affinity selection methods, however, can be time-consuming, low-throughput, or provide hits that display low selectivity to the target. Here we report an automated bio-layer interferometry (BLI)-assisted affinity selection platform. When coupled with tandem mass spectrometry (MS), this method enables both rapid de novo discovery and affinity maturation of known peptide binders with high selectivity. The BLI-assisted AS-MS technology also features real-time monitoring of the peptide binding during the library selection process, a feature unattainable by current selection approaches. We show the utility of the BLI AS-MS platform toward rapid identification of novel nanomolar (dissociation constant, KD < 50 nM) non-canonical binders to the leukemia-associated oncogenic protein menin. To our knowledge, this is the first application of BLI to the affinity selection of synthetic peptide libraries. We believe our approach can significantly accelerate the use of synthetic peptidomimetic libraries in drug discovery.

This work reports an automated affinity selection-mass spectrometry (AS-MS) approach amenable to both de novo peptide binder discovery and affinity maturation of known binders in a high-throughput and selective manner.  相似文献   

11.
A key challenge in many drug discovery programs is to accurately assess the potential value of screening hits. This is particularly true in fragment-based drug design (FBDD), where the hits often bind relatively weakly, but are correspondingly small. Ligand efficiency (LE) considers both the potency and the size of the molecule, and enables us to estimate whether or not an initial hit is likely to be optimisable to a potent, druglike lead. While size is a key property that needs to be controlled in a small molecule drug, there are a number of additional properties that should also be considered. Lipophilicity is amongst the most important of these additional properties, and here we present a new efficiency index (LLEAT) that combines lipophilicity, size and potency. The index is intuitively defined, and has been designed to have the same target value and dynamic range as LE, making it easily interpretable by medicinal chemists. Monitoring both LE and LLEAT should help both in the selection of more promising fragment hits, and controlling molecular weight and lipophilicity during optimisation.  相似文献   

12.
Recent explosive growth of ‘make-on-demand’ chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chemical structures, calling for the development of automated hit-selecting protocols to minimize human intervention and error. Herein, we report the development of an artificial intelligence-driven virtual screening pipeline that utilizes Deep Docking with Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs to screen 40 billion molecules against SARS-CoV-2 main protease (Mpro). This campaign returned a significant number of experimentally confirmed inhibitors of Mpro enzyme, and also enabled to benchmark the performance of twenty-eight hit-selecting strategies of various degrees of stringency and automation. These findings provide new starting scaffolds for hit-to-lead optimization campaigns against Mpro and encourage the development of fully automated end-to-end drug discovery protocols integrating machine learning and human expertise.

Deep learning-accelerated docking coupled with computational hit selection strategies enable the identification of inhibitors for the SARS-CoV-2 main protease from a chemical library of 40 billion small molecules.  相似文献   

13.
Increasingly, chemical libraries are being produced which are focused on a biological target or group of related targets, rather than simply being constructed in a combinatorial fashion. A screening collection compiled from such libraries will contain multiple analogues of a number of discrete series of compounds. The question arises as to how many analogues are necessary to represent each series in order to ensure that an active series will be identified. Based on a simple probabilistic argument and supported by in-house screening data, guidelines are given for the number of compounds necessary to achieve a "hit", or series of hits, at various levels of certainty. Obtaining more than one hit from the same series is useful since this gives early acquisition of SAR (structure-activity relationship) and confirms a hit is not a singleton. We show that screening collections composed of only small numbers of analogues of each series are sub-optimal for SAR acquisition. Based on these studies, we recommend a minimum series size of about 200 compounds. This gives a high probability of confirmatory SAR (i.e. at least two hits from the same series). More substantial early SAR (at least 5 hits from the same series) can be gained by using series of about 650 compounds each. With this level of information being generated, more accurate assessment of the likely success of the series in hit-to-lead and later stage development becomes possible.  相似文献   

14.
A critical challenge to the fragment-based drug discovery (FBDD) is its low-throughput nature due to the necessity of biophysical method-based fragment screening. Herein, a method of pharmacophore-linked fragment virtual screening (PFVS) was successfully developed. Its application yielded the first picomolar-range Q(o) site inhibitors of the cytochrome bc(1) complex, an important membrane protein for drug and fungicide discovery. Compared with the original hit compound 4 (K(i) = 881.80 nM, porcine bc(1)), the most potent compound 4f displayed 20?507-fold improved binding affinity (K(i) = 43.00 pM). Compound 4f was proved to be a noncompetitive inhibitor with respect to the substrate cytochrome c, but a competitive inhibitor with respect to the substrate ubiquinol. Additionally, we determined the crystal structure of compound 4e (K(i) = 83.00 pM) bound to the chicken bc(1) at 2.70 ? resolution, providing a molecular basis for understanding its ultrapotency. To our knowledge, this study is the first application of the FBDD method in the discovery of picomolar inhibitors of a membrane protein. This work demonstrates that the novel PFVS approach is a high-throughput drug discovery method, independent of biophysical screening techniques.  相似文献   

15.
Medium-sized rings have much promise in medicinal chemistry, but are difficult to make using direct cyclisation methods. In this minireview, we highlight the value of ring expansion strategies to address this long-standing synthetic challenge. We have drawn on recent progress (post 2013) to highlight the key reaction design features that enable successful ‘normal-to-medium’ ring expansion for the synthesis of these medicinally important molecular frameworks, that are currently under-represented in compound screening collections and marketed drugs in view of their challenging syntheses.

Ring expansion strategies are ideally suited to make synthetically challenging, medium-sized rings with much potential in medicinal chemistry.  相似文献   

16.
Integration of flexible data-analysis tools with cheminformatics methods is a prerequisite for successful identification and validation of “hits” in high-throughput screening (HTS) campaigns. We have designed, developed, and implemented a suite of robust yet flexible cheminformatics tools to support HTS activities at the Broad Institute, three of which are described herein. The “hit-calling” tool allows a researcher to set a hit threshold that can be varied during downstream analysis. The results from the hit-calling exercise are reported to a database for record keeping and further data analysis. The “cherry-picking” tool enables creation of an optimized list of hits for confirmatory and follow-up assays from an HTS hit list. This tool allows filtering by computed chemical property and by substructure. In addition, similarity searches can be performed on hits of interest and sets of related compounds can be selected. The third tool, an “S/SAR viewer,” has been designed specifically for the Broad Institute’s diversity-oriented synthesis (DOS) collection. The compounds in this collection are rich in chiral centers and the full complement of all possible stereoisomers of a given compound are present in the collection. The S/SAR viewer allows rapid identification of both structure/activity relationships and stereo-structure/activity relationships present in HTS data from the DOS collection. Together, these tools enable the prioritization and analysis of hits from diverse compound collections, and enable informed decisions for follow-up biology and chemistry efforts.  相似文献   

17.
Fragment-based screening is an emerging technology which is used as an alternative to high-throughput screening (HTS), and often in parallel. Fragment screening focuses on very small compounds. Because of their small size and simplicity, fragments exhibit a low to medium binding affinity (mM to μM) and must therefore be screened at high concentration in order to detect binding events. Since some issues are associated with high-concentration screening in biochemical assays, biophysical methods are generally employed in fragment screening campaigns. Moreover, these techniques are very sensitive and some of them can give precise information about the binding mode of fragments, which facilitates the mandatory hit-to-lead optimization. One of the main advantages of fragment-based screening is that fragment hits generally exhibit a strong binding with respect to their size, and their subsequent optimization should lead to compounds with better pharmacokinetic properties compared to molecules evolved from HTS hits. In other words, fragments are interesting starting points for drug discovery projects. Besides, the chemical space of low-complexity compounds is very limited in comparison to that of drug-like molecules, and thus easier to explore with a screening library of limited size. Furthermore, the "combinatorial explosion" effect ensures that the resulting combinations of interlinked binding fragments may cover a significant part of "drug-like" chemical space. In parallel to experimental screening, virtual screening techniques, dedicated to fragments or wider compounds, are gaining momentum in order to further reduce the number of compounds to test. This article is a review of the latest news in both experimental and in silico virtual screening in the fragment-based discovery field. Given the specificity of this journal, special attention will be given to fragment library design.  相似文献   

18.
Machine learning has been increasingly applied to the field of computer-aided drug discovery in recent years, leading to notable advances in binding-affinity prediction, virtual screening, and QSAR. Surprisingly, it is less often applied to lead optimization, the process of identifying chemical fragments that might be added to a known ligand to improve its binding affinity. We here describe a deep convolutional neural network that predicts appropriate fragments given the structure of a receptor/ligand complex. In an independent benchmark of known ligands with missing (deleted) fragments, our DeepFrag model selected the known (correct) fragment from a set over 6500 about 58% of the time. Even when the known/correct fragment was not selected, the top fragment was often chemically similar and may well represent a valid substitution. We release our trained DeepFrag model and associated software under the terms of the Apache License, Version 2.0.

DeepFrag is a machine-learning model designed to assist with lead optimization. It recommends appropriate fragment additions given the 3D structures of a protein receptor and bound small-molecule ligand.  相似文献   

19.
Chromatin signaling relies on a plethora of posttranslational modifications (PTM) of the histone proteins which package the long DNA molecules of our cells in reoccurring units of nucleosomes. Determining the biological function and molecular working mechanisms of different patterns of histone PTMs requires access to various chromatin substrates of defined modification status. Traditionally, these are achieved by individual reconstitution of single nucleosomes or arrays of nucleosomes in conjunction with modified histones produced by means of chemical biology. Here, we report an alternative strategy for establishing a library of differentially modified nucleosomes that bypasses the need for many individual syntheses, purification and assembly reactions by installing modified histone tails on ligation-ready, immobilized nucleosomes reconstituted in a single batch. Using the ligation-ready nucleosome strategy with sortase-mediated ligation for histone H3 and intein splicing for histone H2A, we generated libraries of up to 280 individually modified nucleosomes in 96-well plate format. Screening these libraries for the effects of patterns of PTMs onto the recruitment of a well-known chromatin factor, HP1 revealed a previously unknown long-range cross-talk between two modifications. H3S28 phosphorylation enhances recruitment of the HP1 protein to the H3K9 methylated H3-tail only in nucleosomal context. Detailed structural analysis by NMR measurements implies negative charges at position 28 to increase nucleosomal H3-tail dynamics and flexibility. Our work shows that ligation-ready nucleosomes enable unprecedented access to the ample space and complexity of histone modification patterns for the discovery and dissection of chromatin regulatory principles.

280 different patterns of histone modifications were installed in preassembled nucleosomes using PTS and SML enabling screening of readout crosstalk.  相似文献   

20.
Efficient fluorophores with easy synthetic routes and fast responses are of great importance in clinical diagnostics. Herein, we report a new, rigid pentacyclic pyrylium fluorophore, PS-OMe, synthesised in a single step by a modified Vilsmeier–Haack reaction. Insights into the reaction mechanism facilitated a new reaction protocol for the efficient synthesis of PS-OMe which upon demethylation resulted in a “turn-on” pH sensor, PS-OH. This new fluorescent probe has been successfully used to monitor intracellular acidification at physiological pH. From the fluorescence image analysis, we were able to quantify the intracellular dynamic pH change during apoptosis. This new pH probe is a potential chemical tool for screening, drug discovery and dose determination in cancer therapy.

A modified Vilsmeier–Haack reaction resulted in the synthesis of a pyrylium based turn-on fluorescent pH probe. The probe can monitor minute acidification and dynamic pH variation in cells during apoptosis with therapeutic chemo drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号